• Title/Summary/Keyword: Rock block

Search Result 211, Processing Time 0.023 seconds

Analysis of Relationship between 2-D Fabric Tensor Parameters and Hydraulic Properties of Fractured Rock Mass (절리성 암반의 이차원 균열텐서 파라미터와 수리적 특성 간의 상관성 분석에 관한 연구)

  • Um, Jeong-Gi;Han, Jisu
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • As a measure of the combined effect of fracture geometry, the fabric tensor parameters could quantify the status of the connected fluid flow paths in discrete fracture network (DFN). The correlation analysis between fabric tensor parameters and hydraulic properties of the 2-D DFN was performed in this study. It is found that there exists a strong nonlinear relationship between the directional conductivity and the fabric tensor component estimated in the direction normal to the direction of hydraulic conductivity. The circular radial plots without significant variation of the first invariant ($F_0$) of fabric tensor for different sized 2-D DFN block are a necessary condition for treating representative element volume (REV) of a fractured rock mass. The relative error (ER) between the numerically calculated directional hydraulic conductivity and the theoretical directional hydraulic conductivity decreases with the increase in $F_0$. A strong functional relation seems to exist between the $F_0$ and the average block hydraulic conductivity.

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Response Characteristics of Two Block System under Seismic Base Excitation (이중 블록 계통의 비선형 지진응답 특성)

  • Shin, Tae-myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1288-1293
    • /
    • 2009
  • This paper discusses about modeling method to simulate a nonlinear behavior like sliding or rocking of two stacked body system under earthquake condition. A double body system design can be an option to reduce seismic response of a component in comparison to a single body system for free standing structures. Therefore, according to the priority of components, the structure is to be designed by proper ratio of partition in their height for improvement of seismic capability and structural integrity. Nonlinear modeling and analysis using simple rigid body and dynamic system has been performed to check the trend in such cases. As a result, one of the two bodies can be chosen to reduce the seismic response from energy absorption of the other one by appropriate application of friction ratios not only in slip-slip condition but in slip-rock condition.

Sliding and rocking response of rigid blocks due to horizontal excitations

  • Yang, Yeong-Bin;Hung, Hsiao-Hui;He, Meng-Ju
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • To study the dynamic response of a rigid block standing unrestrained on a rigid foundation which shakes horizontally, four modes of motion can be identified, i.e., rest, slide, rock, and slide and rock. The occurrence of each of these four modes and the transition between any two modes depend on the parametric values specified, the initial conditions, and the magnitude of ground acceleration. In this paper, a general two-dimensional theory is presented for dealing with the various modes of a free-standing rigid block, considering in particular the impact occurring during the rocking motion. Through selection of proper values for the system parameters, the occurrence of each of the four modes and the transition between different modes are demonstrated in the numerical examples.

Calculation of Equivalent Block Permeabilities using HydroDFN Model Analysis in Jointed Rocks (균열 암반에서의 HydroDFN 모델 해석을 이용한 등가블록투수계수의 계산)

  • Kim, Hyung-Mok;Ryu, Dong-Woo;Shin, Hee-Soon;Tanaka, Tatsuya;Park, Eui-Seop
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.234-243
    • /
    • 2007
  • In this paper, it was aimed to enhance core processes required in establishing hydrogeological models constructed using borehole investigation results. Water Conducting Feature(WCF) information was extracted from borehole investigation, and HydroDFN model was constructed based on the WCF information. The HydroDFN model was sub-divided by cubic blocks, and equivalent permeability of each sub-divided block was calculated and compared with the results of hydraulic test at the borehole. Through these analysis processes, suggestion for identifying and prescribing WCF parameters in the construction of HydroDFN model was made.

Experimental Study on the Hydraulic Performance of Concrete Block Substitutes for Rock Armor (피복석 대체블록의 성능평가를 위한 수리실험)

  • 홍군희;이성현;전인식
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.118-121
    • /
    • 2002
  • 항만시설의 기본재료로서 가장 널리 사용되고 있는 피복석 (Rock armor)의 경우 저렴하며, 구입이 용이하다는 장점 때문에 여러 시설물에 적용되어 왔다. 그러나 계속되는 개발로 인해 석재원도 그 한계에 도달했기 때문에 더 이상 저렴한 재료라고 할 수도 없으며, 무엇보다 난 개발로 인한 국토의 훼손과 이에 따른 비난의 여론으로 인해 피복석의 사용이 제한을 받고 있다. (중략)

  • PDF

A Numerical Study on the Estimation of Safety Factor of Tunnels Excavated in Jointed Rock Mass (절리암반 터널의 안전율 평가를 위한 수치 해석적 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Kang, Yong
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.279-288
    • /
    • 2001
  • Jointed rock mass can be analyzed by either continuum model or discontinuum model. Finite element method or finite difference method is mainly used for continuum modelling. Although discontinuum model is very attractive in analyzing the behavior of each block in jointed blocky rock masses, it has shortcomings such that it is difficult to investigate each joint exactly with the present technology and the amount of calculation in computer becomes trio excessive. Moreover, in case of the jointed blocky rock mass which has more than 2 dominant joint sets, it is impossible to model the behavior of each block. Therefore, a model such as ubiquitous joint model theory which assumes the rock mass as a continuum, is required. In the case of tunnels, unlike slopes, it is not easy to obtain safety factor by utilizing analysis method based on limit equilibrium method because it is difficult to assume the shape of failure surface in advance. For this reason, numerical analyses for tunnels have been limited to analyzing stability rather than in calculating the safety factor. In this study, the behavior of a tunnel excavated in jointed rock mass is analyzed numerically by using ubiquitous joint model which can incorporate 2 joint sets and a method to calculate safety factor of the tunnel numerically is presented. To this end, stress reduction technique is adopted.

  • PDF

Modeling the Effect of Water, Excavation Sequence and Reinforcement on the Response of Tunnels

  • Kim, Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.161-176
    • /
    • 1999
  • A powerful numerical method that can be used for modeling rock-structure interaction is the Discontinuous Deformation Analysis (D D A) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the D D A method have been proposed in the literature, the method is not capable of modeling water-block interaction, sequential loading or unloading and rock reinforcement; three features that are needed when modeling surface or underground excavation in fractured rock. This paper presents three new extensions to the D D A method. The extensions consist of hydro-mechanical coupling between rock blocks and steady water flow in fractures, sequential loading or unloading, and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the D D A method with the new extensions are presented. Simulations of the underground excavation of the \ulcornerUnju Tunnel\ulcorner in Korea were carried out to evaluate the influence of fracture flow, excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that fracture flow and improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the D D A program with the three new extensions can now be used as a practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Calculation of Key Blocks' Safety Ratio based on Discontinuity Analysis (불연속면 분석에 근거한 쐐기블록 안전율 계산)

  • Kim, Eunsung;Noh, Sanghun;Lee, Sang-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.101-108
    • /
    • 2024
  • A system with the ability to recognize potential key blocks during tunnel construction by analyzing the rock face was developed in this study. This system predicts the formation of key blocks in advance and evaluates their safety factors. A laser scanner was used to collect a three-dimensional point cloud of the rock face, which was then utilized to model the excavation surface and derive the joint surfaces. Because joint surfaces have specific strikes and dip angles, the key blocks formed by these surfaces are deduced through iterative calculations, and the safety factor of each key block can be calculated accordingly. The model experiments confirmed the accuracy of the system's output in terms of the joint surface characteristics. By inputting the joint surface information, the calculated safety factors were compared with those from the existing commercial software, demonstrating stable calculation results within a 1% error margin.