• Title/Summary/Keyword: Rock Numerical modelling

Search Result 92, Processing Time 0.024 seconds

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.

A Study on the Numerical Modelling of Blast Source (발파원 모델링을 위한 수치해석적 고찰)

  • 백승규;류창하
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.37-42
    • /
    • 2003
  • The source of rock breakage by explosive blasting is the energy released from an explosive. It is transmitted to the surrounding rock mass causing various types of fracture of rock material. The reaction of explosives and the resulting action on the surrounding rock mass are completed in very short tine, making it almost impossible to observe the processes occurring in the interior of the rock mass. In this study several input parameters are investigated by numerical modelling of blast source and dynamic response of rock mass. It is shown that damping coefficient and rising time are major parameters affecting dynamics response of rock mass.

Laboratory experiment on the assessment of the ground strength with corestone (실내실험을 통한 핵석지반의 강도정수 산정연구)

  • 이수곤;김동은;황의성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.95-102
    • /
    • 2003
  • Corestone rock mass has complex characters because it is made up of stronger and stiffer corestone in a weaker and softer matrix. Physical model corestone rock mass made up of stiffer corestone in weaker matrix were tested in uniaxial compression and numercal modelling analysis The result of the uniaxial compression tests showed that increasing the corestone proportion generally increased the modulus of deformation. And the strength decreased in the lower corestone proportion, but it increased in the higher proportion(45%, 65% corestone by volume). The strength and the modulus of deformation were not affected by different size coretone on the same proportion. The result of the numerical modelling analysis showed similar trend compared with the result of the result of the uniaxial compression test. But though the result of th uniaxial compression test is similar to the result of the numerical modelling analysis, it's unreasonalble to apply the results of this paper to in situ corestone rock mass. So mere laboratory tests including triaxial test and the other numerical program analyses are necessary to apply the results to in situ corestone mass

  • PDF

Dog bone shaped specimen testing method to evaluate tensile strength of rock materials

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Aysegul Durmus
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.883-898
    • /
    • 2017
  • To eliminate the holding and gluing problems making the direct tensile strength test hard to be applied, a new method of testing specimens prepared using lathe machine to make the dog bone shape is assessed whether it could be applied to determine accurate direct tensile strength values of rock materials. A series of numerical modelling analyses was performed using finite element method to investigate the effect of different specimen and steel holder geometries. In addition to numerical modelling study, a series of direct tensile strength tests was performed on three different groups of rock materials and a rock-like cemented material to compare the results with those obtained from the finite element analyses. A proper physical property of the lathed specimens was suggested and ideal failure of the dog bone shaped specimens was determined according to the results obtained from this study.

Numerical study of rock mechanical and fracture property based on CT images

  • Xiao, Nan;Luo, Li-Cheng;Huang, Fu;Ling, Tong-Hua
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.395-407
    • /
    • 2022
  • In this paper, cracks with different angles are prefabricated in rock specimens to study the fracture characteristics of rock based on CT images. The rock specimens are prepared for compression tests according to the standard recommended by ISRM (International Society for Rock Mechanics). The effects of different angles on rock mechanical properties and crack propagation fracture modes are analyzed. Then, based on the cohesive element method and CT images, the relationship between porosity and Young's modulus as well as the fracture property is explored by the numerical modelling. In the modelling, the distribution of Young's modulus is determined by the CT image through the field variable method. The results show that prefabricated cracks reduce the mechanical properties of rock. The closer the angles of the prefabricated crack is, the greater the Young's modulus of the rock sample is. The failure process of each specimen with prefabricated cracks is formed by the initiation and propagation of crack, and the angle of the prefabricated crack will affect the type of extended crack. As part of the numerical model proposed in this paper, the microstructure of rocks is reflected by CT images. The numerical results verify the effectiveness of the cohesive element method in the study of crack propagation for rock. The rock model in this paper can be used to predict engineering disasters such as collapse and landslide caused by rock fracture, which means that the methodology adopted in this paper is comprehensive and important to solve rock engineering problems.

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

Experimental observation and realistic modeling of initiation and propagation of the rock fracture by acoustic emission

  • Wang, Shu-Hong;Lee, Chung-In;Jeon, Seok-Won;Lee, Hee-Kwang;Tang, Chun-An
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.79-93
    • /
    • 2006
  • It is well known that acoustic emission (AE) is indicator of rock fracturing or damage as rock is brought to failure under the uniaxial compressive loads. In this paper, an experimental study on the source location of acoustic emission on the cylindrical specimens of granite under uniaxial compression test was made. The AE source location was made by measuring the six channel AE data. Comparing to this experiment, the numerical method is applied to model the initiation and propagation of fracture by AE using a numerical code, RFPA (Realistic Failure Process Analysis). This code incorporates the mesoscopic heterogeneity in Young's modulus and rock strength characteristic of rock masses. In the numerical models, values of Young's modulus and rock strength are realized according to a Weibull distribution in which the distribution parameters represent the level of heterogeneity of the medium. The results of the simulations show that RFPA can be used not only to produce acoustic emission similar to those measurements in our experiments, but also to predict fracturing patterns under uniaxial loading condition.

  • PDF

A new formulation for calculation of longitudinal displacement profile (LDP) on the basis of rock mass quality

  • Rooh, Ali;Nejati, Hamid Reza;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.539-545
    • /
    • 2018
  • Longitudinal Displacement Profile (LDP) is an appropriate tool for determination of the displacement magnitude of the tunnel walls as a function of the distance to the tunnel face. Some useful formulations for calculation of LDP have been developed based on the monitoring data on site or by 3D numerical simulations. However, the presented equations are only based on the tunnel dimensions and for different quality of rock masses proposed a unique LDP. In the present study, it is tried to present a new formulation, for calculation of LDP, on the basis of Rock mass quality. For this purpose, a comprehensive numerical simulation program was developed to investigate the effect of rock mass quality on the LDP. Results of the numerical modelling were analyzed and the least square technique was used for fitting an appropriate curve on the derived data from the numerical simulations. The proposed formulation in the present study, is a logistic function and the constants of the logistic function were predicted by rock mass quality index (GSI). Results of this study revealed that, the LDP curves of the tunnel surrounded by rock masses with high quality (GSI>60) match together; because the rock mass deformation varies over an elastic range.

Review on Discontinuum-based Coupled Hydro-Mechanical Analyses for Modelling a Deep Geological Repository for High-Level Radioactive Waste (고준위방사성폐기물 심층처분장 모델링을 위한 불연속체 기반 수리-역학 복합거동 해석기법 현황 분석)

  • Kwon, Saeha;Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.309-332
    • /
    • 2021
  • Natural barrier systems surrounding the geological repository for the high-level radioactive waste should guarantee the hydraulic performance for preventing or delaying the leakage of radionuclide. In the case of the behavior of a crystalline rock, the hydraulic performance tends to be decided by the existence of discontinuities, so the coupled hydro-mechanical(HM) processes on the discontinuities should be characterized. The discontinuum modelling can describe the complicated behavior of discontinuities including creation, propagation, deformation and slip, so it is appropriate to model the behavior of a crystalline rock. This paper investigated the coupled HM processes in discontinuum modelling such as UDEC, 3DEC, PFC, DDA, FRACOD and TOUGH-UDEC. Block-based discontinuum methods tend to describe the HM processes based on the fluid flow through the discontinuities, and some methods are combined with another numerical tool specialized in hydraulic analysis. Particle-based discontinuum modelling describes the overall HM processes based on the fluid flow among the particles. The discontinuum methods that are currently available have limitations: exclusive simulations for two-dimension, low hydraulic simulation efficiency, fracture-dominated fluid flow and simplified hydraulic analysis, so it could be improper to the modelling the geological repository. Based on the concepts of various discontinuum modelling compiled in this paper, the advanced numerical tools for describing the accurate coupled HM processes of the deep geological repository should be developed.

Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System (루프형 낙성방지안전시설의 구조적 안전성 검토 연구)

  • Park, Cheol-Woo;Lee, Hak-Yoog
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from falling rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed numerical modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.