• 제목/요약/키워드: Robustness performance

검색결과 1,689건 처리시간 0.029초

비선형 시스템에 적용가능한 피드백 사용형 2차 반복 학습제어 알고리즘 (A Second-Order Iterative Learning Algorithm with Feedback Applicable to Nonlinear Systems)

  • 허경무;우광준
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.608-615
    • /
    • 1998
  • In this paper a second-order iterative learning control algorithm with feedback is proposed for the trajectory-tracking control of nonlinear dynamic systems with unidentified parameters. In contrast to other known methods, the proposed teaming control scheme utilize more than one past error history contained in the trajectories generated at prior iterations, and a feedback term is added in the learning control scheme for the enhancement of convergence speed and robustness to disturbances or system parameter variations. The convergence proof of the proposed algorithm is given in detail, and the sufficient condition for the convergence of the algorithm is provided. We also discuss the convergence performance of the algorithm when the initial condition at the beginning of each iteration differs from the previous value of the initial condition. The effectiveness of the proposed algorithm is shown by computer simulation result. It is shown that, by adding a feedback term in teaming control algorithm, convergence speed, robustness to disturbances and robustness to unmatched initial conditions can be improved.

  • PDF

CONTROL PHILOSOPHY AND ROBUSTNESS OF ELECTRONIC STABILITY PROGRAM FOR THE ENHANCEMENT OF VEHICLE STABILITY

  • Kim, D.S.;Hwang, I.Y.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.201-208
    • /
    • 2006
  • This paper describes the control philosophy of ESP(Electronic Stability Program) which consists of the stability control the fault diagnosis and the fault tolerant control. Besides the functional performance of the stability control, robustness of control and fault diagnosis is focused to avoid the unnecessary activation of the controller. The look-up tables are mentioned to have the accurate target yaw rate of the vehicle and obtained from vehicle tests for the whole operation range of the steering wheel angle and the vehicle speed. The wheel slip control with a design goal of wheel slip invariance is implemented for the yaw compensation and the target wheel slip is determined by difference between the target yaw rate and actual yaw rate. Since the ESP has a high severity level and the robust control is required, the robustness margin for the stability control is determined according to several uncertainties and the robust fault diagnosis is performed. Both computer simulation and test results are shown in this paper.

Pruning for Robustness by Suppressing High Magnitude and Increasing Sparsity of Weights

  • Cho, Incheon;Ali, Muhammad Salman;Bae, Sung-Ho
    • 방송공학회논문지
    • /
    • 제26권7호
    • /
    • pp.862-867
    • /
    • 2021
  • Although Deep Neural Networks (DNNs) have shown remarkable performance in various artificial intelligence fields, it is well known that DNNs are vulnerable to adversarial attacks. Since adversarial attacks are implemented by adding perturbations onto benign examples, increasing the sparsity of DNNs minimizes the propagation of errors to high-level layers. In this paper, unlike the traditional pruning scheme removing low magnitude weights, we eliminate high magnitude weights that are usually considered high absolute values, named 'reverse pruning' to ensure robustness. By conducting both theoretical and experimental analyses, we observe that reverse pruning ensures the robustness of DNNs. Experimental results show that our reverse pruning outperforms previous work with 29.01% in Top-1 accuracy on perturbed CIFAR-10. However, reverse pruning does not guarantee benign samples. To relax this problem, we further conducted experiments by adding a regularization term for the high magnitude weights. With adding the regularization term, we also applied conventional pruning to ensure the robustness of DNNs.

구배 지수에 근거한 강건 최적 설계 기법을 이용한 공진형 미소탐침의 강건 최적화 (Robust Optimization of a Resonant-type Micro-probe Using Gradient Index Based Robust Optimal Design Method)

  • 한정삼;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1254-1261
    • /
    • 2003
  • In this paper we present a simple and efficient robust optimal design formulation and its application to a resonant-type micro probe. The basic idea is to use the Gradient Index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-efficient and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation.

  • PDF

Sliding Mode Control for Servo Motors Based on the Differential Evolution Algorithm

  • Yin, Zhonggang;Gong, Lei;Du, Chao;Liu, Jing;Zhong, Yanru
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.92-102
    • /
    • 2018
  • A sliding mode control (SMC) for servo motors based on the differential evolution (DE) algorithm, called DE-SMC, is proposed in this study. The parameters of SMC should be designed exactly to improve the robustness, realize the precision positioning, and reduce the steady-state speed error of the servo drive. The main parameters of SMC are optimized using the DE algorithm according to the speed feedback information of the servo motor. The most significant influence factor of the DE algorithm is optimization iteration. A suitable iteration can be achieved by the tested optimization process profile of the main parameters of SMC. Once the parameters of SMC are optimized under a convergent iteration, the system realizes the given performance indices within the shortest time. The experiment indicates that the robustness of the system is improved, and the dynamic and steady performance achieves the given performance indices under a convergent iteration when motor parameters mismatch and load disturbance is added. Moreover, the suitable iteration effectively mitigates the low-speed crawling phenomenon in the system. The correctness and effectiveness of DE-SMC are verified through the experiment.

신경망을 이용한 이동로봇 궤적제어기 성능개선 (A Performance Improvement for Tracking Controller of a Mobile Robot Using Neural Networks)

  • 박재훼;이만형;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1249-1255
    • /
    • 2004
  • A new parameter adaptation scheme for RBF Neural Network (NN) has been developed in this paper. Even though the RBF Neural Network (NN) based controllers are robust against both un-modeled dynamics and external disturbances, the performance is not satisfactory for a fast and precise mobile robot. To improve the tracking performance as well as robustness, all the parameters of RBF NN are updated in real time. The stability of this control law is rigorously proved by following the Lyapunov stability theory and shown by the experimental simulations. The fact that all of the weighting factors, width and center of RBF NN have been updated implies that this scheme utilizes all the possibilities in RBF NN to make the controller robust and precise while the mobile robot is following un-known trajectories. The performance of this new algorithm has been compared to the conventional RBF NN controller where some of the parameters are adjusted for robustness.

BER Performance of OFDM Combined with TDM Using Frequency-Domain Equalization

  • Gacanin, Haris;Takaoka, Shinsuke;Adachi, Fumiyuki
    • Journal of Communications and Networks
    • /
    • 제9권1호
    • /
    • pp.34-42
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (TDM), in this paper called OFDM/TDM, can overcome the high peak-to-average-power ratio (PAPR) problem of the conventional OFDM and improve the robustness against long time delays. In this paper, the bit error rate (BER) performance of OFDM/FDM in a frequency-selective Rayleigh fading. channel is evaluated by computer simulation. It is shown that the use of frequency-domain equalization based on minimum mean square error criterion (MMSE-FDE) can significantly improve the BER performance, compared to the conventional OFDM, by exploiting the channel frequency-selectivity while reducing the PAPR or improving the robustness against long time delays. It is also shown that the performance of OFDM/FDM designed to reduce the PAPR can bridge the conventional OFDM and single-carrier (SC) transmission by changing the design parameter.

성능지표 선정을 통한 강인한 칼만필터 설계 (Robust Kalman Filter Design via Selecting Performance Indices)

  • 정종철;허건수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.59-66
    • /
    • 2005
  • In this paper, a robust stationary Kalman filter is designed by minimizing selected performance indices so that it is less sensitive to uncertainties. The uncertainties include not only stochastic factors such as process noise and measurement noise, but also deterministic factors such as unknown initial estimation error, modeling error and sensing bias. To reduce the effect on the uncertainties, three performance indices that should be minimized are selected based on the quantitative error analysis to both the deterministic and the stochastic uncertainties. The selected indices are the size of the observer gain, the condition number of the observer matrix, and the estimation error variance. The observer gain is obtained by optimally solving the multi-objectives optimization problem that minimizes the indices. The robustness of the proposed filter is demonstrated through the comparison with the standard Kalman filter.

GAT를 이용한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive using GAT)

  • 고재섭;남수명;최정식;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.202-204
    • /
    • 2005
  • This paper is proposed genetic algorithm tuning(GAT) controller for high performance of induction motor drive. We employed GA to the classical PI controller. The approach having ability for global optimization and with good robustness, is expected to overcome some weakness of conventional approaches and to be more acceptable for industrial practices. The control performance of the GAT PI controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

침입탐지시스템 평가 방법론 (A Methodology for Evaluating Intrusion Detection System)

  • 유신근;이남훈;심영철
    • 한국정보처리학회논문지
    • /
    • 제7권11호
    • /
    • pp.3445-3461
    • /
    • 2000
  • 많은 종류의 침입탐지시스템들이 국내외에서 만들어졌으나 이러한 시스템들을 평가할 수 있는 방법론에 대한 연구는 아직 미흡한 상태이다. 이와 같은 상황을 인지하여 본 논문에서는 침입탐지시스템들을 평가할 수 있는 여러 가지 기준 중에서 가장 중요하다고 생각되는 침입탐지시스템 성능 및 안전성 측면에 대해 평가 초점을 맞추어 이에 대한 방법론을 제시하려한다. 기존 침입탐지시스템 성능 측면 평가 관련 연구에서는 주로 오용행위에 대해 평가를 실시하였으며 이에 대한 탐지 능력을 측정하는데 초점을 맞춘 반면 비정상행위 대해서는 현재 자세한 평가 방법론을 제시하고 있지 않은 상황이다. 안전성 평가의 경우 오프라인 방법론상에서는 적용하기 어려우며 기존 온라인 방법론에서는 아직 평가 방법이 제시되고 있지 않은 실정이다. 본 논문에서는 비정상행위의 체계적인 분류와 이를 기반으로 한 비정상행위 생성 방법 제시를 통해 오용행위 탐지시스템과 더불어 비정상행위 탐지시스템에 대해서도 평가 방법을 제시하고자 하며 또한 침입탐지시스템의 안전성을 위해할 수 있는 요소들을 파악하여 이를 기반으로 한 안전성 측면 평가 방법도 같이 제시한다.

  • PDF