• Title/Summary/Keyword: Robust waveform design

Search Result 12, Processing Time 0.022 seconds

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.

CRA Based Robust Controller Design for PWM Converter (CRA 기법을 이용한 PWM 컨버터의 강인제어기 설계)

  • Kim, Soo-Cheol;Kim, Hyung-Chul;Chung, Gyo-Bum;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • In this paper, a robust controller for PWM converter is proposed. The proposde converter controller consists of a PI controller for DC output voltage and a current controller using error-space approach for maintaining the sinusoidal current waveform and unity power factor. Conventionally, the try and error method has been used to design the current controller considering the switching frequency of the devices and sampling frequency of the digital controller. But this proposed method is based on characteristic ratio assignment(CRA) method which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. First, the CRA based current controller algorithm is explained. Then the validity of proposed controller is verified through the PSiM simulation and experience results.

Design of Silent Discharging Ozonizer using Algorithm for Sinusoidal Filter (정현파필터 알고리즘을 이용한 무성방전형 오존발생장치의 설계)

  • Eom, Tae-Wook;Lee, Byung-Soon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.56-61
    • /
    • 2014
  • In this paper, a control method using Sinusoidal Filter Controller of Silent Discharging Ozonizer is proposed and also the control methode performed robust control against variation of capacitance, command voltage and frequency. As the control system for this methode, Sinusoidal Filter Algorism can be simplified configuration of the power supply by using a low-pass filter. Through simulations and experiment results, the proposed control methode compensates for the high voltage waveform to the ozonizer.

Analysis of Jamming Robustness Performance According to RNSS Signal Waveforms

  • Subin Lee;Kahee Han;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.229-236
    • /
    • 2023
  • As the importance and dependency of the positioning, navigation, and timing (PNT) information provided by the radio navigation satellite service (RNSS) increases, the vulnerability of RNSS to jamming can lead to significant risks. The signal design under the consideration of anti-jamming performance helps to provide service which is robust to jamming environment. Therefore, it is necessary to evaluate the jamming robustness performance during the design of new signals. In this paper, we introduce figures-of-merit (FoMs) that can be used for an anti-jamming performance analysis of designed signals of interest. We then calculate the FoMs, such as the quality factor (Q factor), tolerable jamming-to-signal ratio (tolerable J/S), and range to jammer (d) for legacy RNSS signals and analyze the results. Finally, based on the results of the analysis, we derive waveform design conditions to obtain good anti-jamming performance. As a result, this paper shows that the waveforms with wide bandwidth leading to good spectral efficiency provide strong anti-jamming performance.

A Study on Design of a Compensated Bang-Bang Current Controller for Dc Series Wound Motor (직류 직권 모터용 보상된 BANG-BANG형 전류제어기 설계에 관한 연구)

  • Kim, Jong-Keon;Bae, Jong-Il;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2126-2128
    • /
    • 1997
  • In order to establish the robust current controller design technique of series wound motor driver system. This paper proposes a method of compensated Bang-Bang current control using a series wound motor driver system under improperly variable load. Real time implementation of compensated Bang-Bang current controller achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

  • PDF

The development of compensated bang-bang curent controller for DC series wound motor (직류직권 모타용 보상된 Bang-Bang 전류제어기 개발)

  • 김종건;이만형;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.52-55
    • /
    • 1996
  • In order to establish the robust current controller design technique of series wound motor driver system. This paper proposes a method of compensated Bang-Bang current control using a series wound motor driver system under improperly variable load. To get minimum time torque control. A compensated Bang-Bang current controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor be used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang a controller. Both nonlinear operating characteristics of Digital switching elements and Describing Function methods are used for the analysis and synthesis. Real time implementation of compensated Bang-Bang current is achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

  • PDF

A Study on The Bang-Bang Controller Applied to Electrical Vehicle (전기차량에 적용한 Bang-Bang 제어기 연구)

  • Bae, Jong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1089-1094
    • /
    • 2016
  • In order to establish the robust controller design technique of series wound motor driver system. This paper proposes a method of Bang-Bang controller using a series wound motor driver system under improperly variable load. A Bang-Bang controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor is used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang controller. Both nonlinear operating characteristics of digital switching elements and describing function methods are used for the analysis and synthesis. Real time implementation of Bang-Bang controller is achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

A Study of Control Algorithm for Propulsion System (열차 추진제어장치의 알고리즘에 관한 연구)

  • Choi, Jae-Ho;Kim, Hyung-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.51-56
    • /
    • 2007
  • In this paper, control schemes are developed for a propulsion system(Converter/Inverter) in electrical train. A robust controller for PWM converter is proposed. The converter controller consists of a PI controller for DC output voltage and a current controller using error-space approach for maintaining the sinusoidal current waveform and unity power factor. This proposed method is based on characteristic ratio assignment(CRA) method which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. Inverter system is controlled by vector control and slip frequency control. At low speed region, vector control scheme is applied to control instantaneous torque and slip frequency control is performed under overmodulation region and one pulse mode. Because output voltage of converter contains harmonics ripple at twice input ac line frequency, control scheme is developed to reduce the pulsating torque current. The performance of propulsion system will be verified by simulation and prototype experimental results.

The Development of Compensated Bang-Bang Current Controller for Travel Motor of Industry Electrical Vechicle (산업용 전기차량의 주행 모터용 보상된 Bang-Bang 전류제어기 개발)

  • Chen, Young-Shin;Jung, Young-Il;Bae, Jong-Il;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.34-40
    • /
    • 1999
  • In order to establish the design technique of the robust current controller in d.c series wound motor driver system, this paper proposes a method of the compensated Bang-Bang current control using d.c series wound motor driver system under the improperly variable load to get minimum time for the torque control. The compensated Bang-Bang current controller structure is simpler than that of PID plus Bang-Bang controller. This paper shows that a general 16 bits microprocessor is efficiently used to implement such an algorithm. The calculation time of software is extremely small when compared with that of conventional PID plus Bang-Bang controller. Both nonlinear operating characteristics of digital switching elements and describing function methods are used for the analysis and synthesis. Real-time implementation of the compensated Bang-Bang current controller is achieved. The concept of design strategy of the control and the PWM waveform generation algorithms are presented in this paper.

  • PDF