• Title/Summary/Keyword: Robust least squares estimation

Search Result 59, Processing Time 0.022 seconds

An Adaptive M-estimators Robust Estimation Algorithm (적응적 M-estimators 강건 예측 알고리즘)

  • Jang Seok-Woo;Kim Jin-Uk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.21-30
    • /
    • 2005
  • In general, the robust estimation method is well known for a good statistical estimator that is insensitive to small departures from the idealized assumptions for which the estimation is optimized. While there are many existing robust estimation techniques that have been proposed in the literature, two main techniques used in computer vision are M-estimators and least-median of squares (LMS). Among these. we utilized the M-estimators since they are known to provide an optimal estimation of affine motion parameters. The M-estimators have higher statistical efficiency but tolerate much lower percentages of outliers unless properly initialized. To resolve these problems, we proposed an adaptive M-estimators algorithm that effectively separates outliers from non-outliers and estimate affine model parameters, using a continuous sigmoid weight function. The experimental results show the superiority of our method.

  • PDF

A study on robust regression estimators in heteroscedastic error models

  • Son, Nayeong;Kim, Mijeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1191-1204
    • /
    • 2017
  • Weighted least squares (WLS) estimation is often easily used for the data with heteroscedastic errors because it is intuitive and computationally inexpensive. However, WLS estimator is less robust to a few outliers and sometimes it may be inefficient. In order to overcome robustness problems, Box-Cox transformation, Huber's M estimation, bisquare estimation, and Yohai's MM estimation have been proposed. Also, more efficient estimations than WLS have been suggested such as Bayesian methods (Cepeda and Achcar, 2009) and semiparametric methods (Kim and Ma, 2012) in heteroscedastic error models. Recently, Çelik (2015) proposed the weight methods applicable to the heteroscedasticity patterns including butterfly-distributed residuals and megaphone-shaped residuals. In this paper, we review heteroscedastic regression estimators related to robust or efficient estimation and describe their properties. Also, we analyze cost data of U.S. Electricity Producers in 1955 using the methods discussed in the paper.

Localization of an Underwater Robot Using Acoustic Signal (음향 신호를 이용한 수중로봇의 위치추정)

  • Kim, Tae Gyun;Ko, Nak Yong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.231-242
    • /
    • 2012
  • This paper proposes particle filter(PF) method using acoustic signal for localization of an underwater robot. The method uses time of arrival(TOA) or time difference of arrival(TDOA) of acoustic signals from beacons whose locations are known. An experiment in towing tank uses TOA information. Simulation uses TDOA information and it reveals dependency of the localization performance on the uncertainty of robot motion and senor data. Also, comparison of the PF method with the least squares method of spherical interpolation(SI) and spherical intersection(SX) is provided. Since PF uses TOA or TDOA which comes from measurement of external information as well as internal motion information, its estimation is more accurate and robust to the sensor and motion uncertainty than the least squares methods.

Diagnostic Study of Problems under Asymptotically Generalized Least Squares Estimation of Physical Health Model

  • Kim, Jung-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.5
    • /
    • pp.1030-1041
    • /
    • 1999
  • This study examined those problems noticed under the Asymptotically Generalized Least Squares estimator in evaluating a structural model of physical health. The problems were highly correlated parameter estimates and high standard errors of some parameter estimates. Separate analyses of the endogenous part of the model and of the metric of a latent factor revealed a highly skewed and kurtotic measurement indicator as the focal point of the manifested problems. Since the sample sizes are far below that needed to produce adequate AGLS estimates in the given modeling conditions, the adequacy of the Maximum Likelihood estimator is further examined with the robust statistics and the bootstrap method. These methods demonstrated that the ML methods were unbiased and statistical decisions based upon the ML standard errors remained almost the same. Suggestions are made for future studies adopting structural equation modeling technique in terms of selecting of a reference indicator and adopting those statistics corrected for nonormality.

  • PDF

A study on robust recursive total least squares algorithm based on iterative Wiener filter method (반복형 위너 필터 방법에 기반한 재귀적 완전 최소 자승 알고리즘의 견실화 연구)

  • Lim, Jun Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.213-218
    • /
    • 2021
  • It is known that total least-squares method shows better estimation performance than least-squares method when noise is present at the input and output at the same time. When total least squares method is applied to data with time series characteristics, Recursive Total Least Squares (RTS) algorithm has been proposed to improve the real-time performance. However, RTLS has numerical instability in calculating the inverse matrix. In this paper, we propose an algorithm for reducing numerical instability as well as having similar convergence to RTLS. For this algorithm, we propose a new RTLS using Iterative Wiener Filter (IWF). Through the simulation, it is shown that the convergence of the proposed algorithm is similar to that of the RTLS, and the numerical robustness is superior to the RTLS.

Identification of Regression Outliers Based on Clustering of LMS-residual Plots

  • Kim, Bu-Yong;Oh, Mi-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.485-494
    • /
    • 2004
  • An algorithm is proposed to identify multiple outliers in linear regression. It is based on the clustering of residuals from the least median of squares estimation. A cut-height criterion for the hierarchical cluster tree is suggested, which yields the optimal clustering of the regression outliers. Comparisons of the effectiveness of the procedures are performed on the basis of the classic data and artificial data sets, and it is shown that the proposed algorithm is superior to the one that is based on the least squares estimation. In particular, the algorithm deals very well with the masking and swamping effects while the other does not.

ROBUST ESTIMATION USING QUASI-SCORE ESTIMATING FUNCTIONS FOR NONLINEAR TIME SERIES MODELS

  • Cha, Kyung-Yup;Kim, Sah-Myeong;Lee, Sung-Duck
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.385-399
    • /
    • 2003
  • We first introduce the quasi-score estimating function and applied the quasi-score estimating function to nonlinear time series models. We proposed the M quasi-score estimating functions bounded functions for the quasi-score estimating functions. Also, we investigated the asymptotic properties of quasi-likelihood estimators and M quasi-likelihood estimators. Simulation results show that the M quasi-likelihood estimators work better than the least squares estimators under the heavy-tailed distributions

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.

Instantaneous Frequency Estimation of the Gaussian Enveloped Linear Chirp Signal for Localizing the Faults of the Instrumental Cable in Nuclear Power Plant (가우시안 포락선 선형 첩 신호의 순시 주파수 추정을 통한 원전 내 계측 케이블의 고장점 진단 연구)

  • Lee, Chun Ku;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.987-993
    • /
    • 2013
  • Integrity of the control and instrumental cables in nuclear power plant is important to maintain the stability of the nuclear power plants. In order to diagnose the integrity of the cables, the diagnostic methods based on reflectometry have been studied. The reflectometry is a non-destructive method and it is applicable to diagnose the live cables. We introduce a Gaussian enveloped linear chirp reflectometry to diagnose the cables in the nuclear power plants. In this paper, we estimate the instantaneous frequency of the Gaussian enveloped linear chirp signal by using the weighted robust least squares filtering to localize the impedance discontinuities in the class 1E instrumental cable.

A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods (반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법)

  • Le, Tuan-Ho;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.39-74
    • /
    • 2018
  • Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.