• Title/Summary/Keyword: Robust indirect adaptive fuzzy control

Search Result 13, Processing Time 0.023 seconds

Balancing and Position Control of Inverted Pendulum System Using Hierarchical Adaptive Fuzzy Controller (계층적 적응 퍼지제어기법을 사용한 역진자시스템의 안정화 및 위치제어)

  • Kim, Yong-Tae;Lee, Hee-Jin;Kim, Dong-Yon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.164-167
    • /
    • 2004
  • In the paper is proposed a hierarchical adaptive fuzzy controller for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the hierarchical adaptive fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing, a forced disturbance generator which emulates heuristic control strategy, and a supervisory decision maker for the arbitration of two control objectives It is proved that all the signals in the overall system are bounded. Simulation results are given to verify the proposed adapt i ye fuzzy control method.

  • PDF

Adaptive Fuzzy Controller for the Nonlinear System with Unknown Sign of the Input Gain

  • Park Jang-Hyun;Kim Seong-Hwan;Moon Chae-Joo
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.178-186
    • /
    • 2006
  • We propose and analyze a robust adaptive fuzzy controller for nonlinear systems without a priori knowledge of the sign of the input gain function. No assumptions are made about the type of nonlinearities of the system, except that such nonlinearities are smooth. The uncertain nonlinearities are captured by the fuzzy systems that have been proven to be universal approximators. The proposed control scheme completely overcomes the singularity problem that occurs in the indirect adaptive feedback linearizing control. Projection in the estimated parameters and switching in the control input are both not required. The stability of the closed-loop system is guaranteed in the Lyapunov viewpoint.

Model Following Adaptive Controller with Rotor Resistance Estimator for Induction Motor Servo Drives (회전자 저항 추정기를 가지는 유동전동기 구동용 모델추종 적응제어기 설계)

  • Kim, Snag-Min;Han, Woo-Yong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.125-130
    • /
    • 2001
  • This paper presents an indirect field-oriented (IFO) induction motor position servo drives which uses the model following adaptive controller with the artificial neural network(ANN)-based rotor resistance estimator. The model reference adaptive system(MRAS)-based 2-layer ANN estimates the rotor resistance on-line and a linear model-following position controller is designed by using the estimated the rotor resistance value. At the end, a fuzzy logic system(FLS) is added to make the position controller robust to the external disturbances and the parameter variations. The simulation results show the effectiveness of the proposed method.

  • PDF