• Title/Summary/Keyword: Robust algorithm

Search Result 2,732, Processing Time 0.038 seconds

Automatic Tumor Segmentation Method using Symmetry Analysis and Level Set Algorithm in MR Brain Image (대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법)

  • Kim, Bo-Ram;Park, Keun-Hye;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2011
  • In this paper, we proposed the method to detect brain tumor region in MR images. Our method is composed of 3 parts, detection of tumor slice, detection of tumor region and tumor boundary detection. In the tumor slice detection step, a slice which contains tumor regions is distinguished using symmetric analysis in 3D brain volume. The tumor region detection step is the process to segment the tumor region in the slice distinguished as a tumor slice. And tumor region is finally detected, using spatial feature and symmetric analysis based on the cluster information. The process for detecting tumor slice and tumor region have advantages which are robust for noise and requires less computational time, using the knowledge of the brain tumor and cluster-based on symmetric analysis. And we use the level set method with fast marching algorithm to detect the tumor boundary. It is performed to find the tumor boundary for all other slices using the initial seeds derived from the previous or later slice until the tumor region is vanished. It requires less computational time because every procedure is not performed for all slices.

Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis (지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정)

  • Kubota, Ryuji;Nishiyama, Eiichiro;Murase, Kei;Kasahara, Junzo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

Haze Removal of Electro-Optical Sensor using Super Pixel (슈퍼픽셀을 활용한 전자광학센서의 안개 제거 기법 연구)

  • Noh, Sang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.634-638
    • /
    • 2018
  • Haze is a factor that degrades the performance of various image processing algorithms, such as those for detection, tracking, and recognition using an electro-optical sensor. For robust operation of an electro-optical sensor-based unmanned system used outdoors, an algorithm capable of effectively removing haze is needed. As a haze removal method using a single electro-optical sensor, the dark channel prior using statistical properties of the electro-optical sensor is most widely known. Previous methods used a square filter in the process of obtaining a transmission using the dark channel prior. When a square filter is used, the effect of removing haze becomes smaller as the size of the filter becomes larger. When the size of the filter becomes excessively small, over-saturation occurs, and color information in the image is lost. Since the size of the filter greatly affects the performance of the algorithm, a relatively large filter is generally used, or a small filter is used so that no over-saturation occurs, depending on the image. In this paper, we propose an improved haze removal method using color image segmentation. The parameters of the color image segmentation are automatically set according to the information complexity of the image, and the over-saturation phenomenon does not occur by estimating the amount of transmission based on the parameters.

A Study on Tire Surface Defect Detection Method Using Depth Image (깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구)

  • Kim, Hyun Suk;Ko, Dong Beom;Lee, Won Gok;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.211-220
    • /
    • 2022
  • Recently, research on smart factories triggered by the 4th industrial revolution is being actively conducted. Accordingly, the manufacturing industry is conducting various studies to improve productivity and quality based on deep learning technology with robust performance. This paper is a study on the method of detecting tire surface defects in the visual inspection stage of the tire manufacturing process, and introduces a tire surface defect detection method using a depth image acquired through a 3D camera. The tire surface depth image dealt with in this study has the problem of low contrast caused by the shallow depth of the tire surface and the difference in the reference depth value due to the data acquisition environment. And due to the nature of the manufacturing industry, algorithms with performance that can be processed in real time along with detection performance is required. Therefore, in this paper, we studied a method to normalize the depth image through relatively simple methods so that the tire surface defect detection algorithm does not consist of a complex algorithm pipeline. and conducted a comparative experiment between the general normalization method and the normalization method suggested in this paper using YOLO V3, which could satisfy both detection performance and speed. As a result of the experiment, it is confirmed that the normalization method proposed in this paper improved performance by about 7% based on mAP 0.5, and the method proposed in this paper is effective.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

Image Watermarking for Copyright Protection of Images on Shopping Mall (쇼핑몰 이미지 저작권보호를 위한 영상 워터마킹)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.147-157
    • /
    • 2013
  • With the advent of the digital environment that can be accessed anytime, anywhere with the introduction of high-speed network, the free distribution and use of digital content were made possible. Ironically this environment is raising a variety of copyright infringement, and product images used in the online shopping mall are pirated frequently. There are many controversial issues whether shopping mall images are creative works or not. According to Supreme Court's decision in 2001, to ad pictures taken with ham products is simply a clone of the appearance of objects to deliver nothing but the decision was not only creative expression. But for the photographer's losses recognized in the advertising photo shoot takes the typical cost was estimated damages. According to Seoul District Court precedents in 2003, if there are the photographer's personality and creativity in the selection of the subject, the composition of the set, the direction and amount of light control, set the angle of the camera, shutter speed, shutter chance, other shooting methods for capturing, developing and printing process, the works should be protected by copyright law by the Court's sentence. In order to receive copyright protection of the shopping mall images by the law, it is simply not to convey the status of the product, the photographer's personality and creativity can be recognized that it requires effort. Accordingly, the cost of making the mall image increases, and the necessity for copyright protection becomes higher. The product images of the online shopping mall have a very unique configuration unlike the general pictures such as portraits and landscape photos and, therefore, the general image watermarking technique can not satisfy the requirements of the image watermarking. Because background of product images commonly used in shopping malls is white or black, or gray scale (gradient) color, it is difficult to utilize the space to embed a watermark and the area is very sensitive even a slight change. In this paper, the characteristics of images used in shopping malls are analyzed and a watermarking technology which is suitable to the shopping mall images is proposed. The proposed image watermarking technology divide a product image into smaller blocks, and the corresponding blocks are transformed by DCT (Discrete Cosine Transform), and then the watermark information was inserted into images using quantization of DCT coefficients. Because uniform treatment of the DCT coefficients for quantization cause visual blocking artifacts, the proposed algorithm used weighted mask which quantizes finely the coefficients located block boundaries and coarsely the coefficients located center area of the block. This mask improves subjective visual quality as well as the objective quality of the images. In addition, in order to improve the safety of the algorithm, the blocks which is embedded the watermark are randomly selected and the turbo code is used to reduce the BER when extracting the watermark. The PSNR(Peak Signal to Noise Ratio) of the shopping mall image watermarked by the proposed algorithm is 40.7~48.5[dB] and BER(Bit Error Rate) after JPEG with QF = 70 is 0. This means the watermarked image is high quality and the algorithm is robust to JPEG compression that is used generally at the online shopping malls. Also, for 40% change in size and 40 degrees of rotation, the BER is 0. In general, the shopping malls are used compressed images with QF which is higher than 90. Because the pirated image is used to replicate from original image, the proposed algorithm can identify the copyright infringement in the most cases. As shown the experimental results, the proposed algorithm is suitable to the shopping mall images with simple background. However, the future study should be carried out to enhance the robustness of the proposed algorithm because the robustness loss is occurred after mask process.

Preliminary Study on the MR Temperature Mapping using Center Array-Sequencing Phase Unwrapping Algorithm (Center Array-Sequencing 위상펼침 기법의 MR 온도영상 적용에 관한 기초연구)

  • Tan, Kee Chin;Kim, Tae-Hyung;Chun, Song-I;Han, Yong-Hee;Choi, Ki-Seung;Lee, Kwang-Sig;Jun, Jae-Ryang;Eun, Choong-Ki;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.131-141
    • /
    • 2008
  • Purpose : To investigate the feasibility and accuracy of Proton Resonance Frequency (PRF) shift based magnetic resonance (MR) temperature mapping utilizing the self-developed center array-sequencing phase unwrapping (PU) method for non-invasive temperature monitoring. Materials and Methods : The computer simulation was done on the PU algorithm for performance evaluation before further application to MR thermometry. The MR experiments were conducted in two approaches namely PU experiment, and temperature mapping experiment based on the PU technique with all the image postprocessing implemented in MATLAB. A 1.5T MR scanner employing a knee coil with $T2^*$ GRE (Gradient Recalled Echo) pulse sequence were used throughout the experiments. Various subjects such as water phantom, orange, and agarose gel phantom were used for the assessment of the self-developed PU algorithm. The MR temperature mapping experiment was initially attempted on the agarose gel phantom only with the application of a custom-made thermoregulating water pump as the heating source. Heat was generated to the phantom via hot water circulation whilst temperature variation was observed with T-type thermocouple. The PU program was implemented on the reconstructed wrapped phase images prior to map the temperature distribution of subjects. As the temperature change is directly proportional to the phase difference map, the absolute temperature could be estimated from the summation of the computed temperature difference with the measured ambient temperature of subjects. Results : The PU technique successfully recovered and removed the phase wrapping artifacts on MR phase images with various subjects by producing a smooth and continuous phase map thus producing a more reliable temperature map. Conclusion : This work presented a rapid, and robust self-developed center array-sequencing PU algorithm feasible for the application of MR temperature mapping according to the PRF phase shift property.

  • PDF