• Title/Summary/Keyword: Robust Stability

Search Result 1,141, Processing Time 0.029 seconds

A Study on Simulation and Performance Evaluation of Group Communication over Mobile Wimax (시뮬레이션에 의한 모바일 와이맥스 네트워크에서 그룹단위 통신의 성능평가에 관한 연구)

  • Oh, Moon-Kyoon;Kim, Jae-Myong;Yoo, Dae-Seung;Kim, Dae-Young;Thinh, Vu Manh;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.921-929
    • /
    • 2010
  • Group communication that involves the setup of a list of users has been a topic of interest in mobile industry. Push to Talk over Cellular (PoC), a group communication service for cellular phone network, is a type of half duplex communications that allows a single person to reach an active talk group without making several calls, but a single button press. Based on this service, we build a new protocol called Push to Talk over Mobile Wimax that uses group communication service in 802.16e network. Also, weper formed simulation to verify and evaluate performance of the designed service in Mobile Wimax network. From the results of performance evaluation, network administrators can evaluate the stability of network and make a better of network's shortcoming and have decision to build the robust network.

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.

Development and application of ex-solution nanocatalyst (용출 현상 기반 나노촉매의 개발 및 응용)

  • Kim, Jun Hyuk;Kim, Jun Kyu;Jung, WooChul
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.200-210
    • /
    • 2020
  • Supported catalysts are at the heart of manufacturing essential chemical, agricultural and pharmaceutical products. While the longevity of such systems is critically hinged on the durability of metal nanoparticles, the conventional deposition/dispersion techniques are difficult to enhance the stability of the metal nanoparticles due to the lack of control over the interaction between metal-support. Regarding this matter, ex-solution has begun to be recognized as one of the most promising methodologies to develop thermally and chemically robust nanoparticles. By dissolving desired catalysts as a cation form into a parent oxide, fine and uniformly distributed metal nano-catalysts can be subsequently grown in situ under reductive heat treatment, which is referred to ex-solution. Over the several years, ex-solved analog has resulted in tremendous progress in the chemical-electrochemical applications due to the exceptional robustness coupled with ease synthesis. Herein, we describe the ex-solution process in detail which therein introducing the unique characteristics of ex-solved particles that distinguish them from conventionally dispersed nanoparticles. We then go through the history of science regarding the ex-solution phenomena and summarize several major research achievements which embrace the ex-solved nanoparticles to markedly promote the catalytic performances. In conclusion, we address the remaining challenges and the future perspectives of this rapidly growing field.

Development of Tracking Equipment for Real­Time Multiple Face Detection (실시간 복합 얼굴 검출을 위한 추적 장치 개발)

  • 나상동;송선희;나하선;김천석;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1823-1830
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro­reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi­face detector and a feature correlation tracker. The estimated position of the face is used to control a pan­tilt servo mechanism in real­time, that moves the camera to keep the tracked face always centered in the image.

A Research of Design and Implementation of Visual Program to Displaying External Factors of Marine Buoy using Quest3D (Quest3D 기반 해상부표 동적안정성의 시각적 표현 프로그램 설계 및 구현에 관한 연구)

  • Lee, Seo-Jeong;Lee, Jae-Wook;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.599-605
    • /
    • 2012
  • As vessels are faster and bigger, higher safety navigation techniques have been required. In marine traffic area, buoy is to be one of the most important equipment, so that it should be built stable and robust. Verification in design level is good to accomplish it. This paper tries to implement visual program to confirm the external stability, which shows the movement on water by external factors such as wind, tide and current. Considering further requirements for additional influences or functions, design architecture for program introduces the concept of software component. Using Quest3D as the graphic tool, visual programming with software component concept can be implemented.

Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

Performance Analysis of Flow Control Method Using Virtual Switchs on ATM (ATM에서 가상 스위치를 이용한 흐름 제어 방식의 성능 분석)

  • 조미령;양성현;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.85-94
    • /
    • 2002
  • EMRCA(Explicit Max_min Rate Control Algorithm) switch, which has been proposed in the ATM(Asychronous Transfer Mode) standard, controls the ABR(Available Bit Rate) service traffic in the ATM networks. The ABR service class of ATM networks uses a feedback control mechanism to adapt to varying link capacities. The VS/VD(Virtual Source/Virtual Destination) technique offers the possibility to segment the otherwise end-to-end ABR control loop into separate loops. The improved feedback delay and the control of ABR traffic inside closed segments provide a better performance and QoS(Quality of Service) for ABR connections with respect to throughput, delay, and jitter. This paper is study of an ABR VS/VD flow control method. Linear control theory offers the means to derive correct choices of parameters and to assess performance issues, like stability of the system, during the design phase. The performance goals are a high link utilization, fair bandwidth distribution and robust operation in various environments, which are verified by discrete event simulations. The major contribution of this work is the use of linear control theory to model and design an ABR flow control method tailored for the special layout of a VS/VD switch, the simulation shows that this techniques better than conventional method.

  • PDF

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries

  • Choi, Haeyoung;Bae, YeoJi;Lee, Sang-Min;Ha, Yoon-Cheol;Shin, Heon-Cheol;Kim, Byung Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.78-89
    • /
    • 2022
  • ANODE-free Li-metal batteries (AFLMBs) operating with Li of cathode material have attracted enormous attention due to their exceptional energy density originating from anode-free structure in the confined cell volume. However, uncontrolled dendritic growth of lithium on a copper current collector can limit its practical application as it causes fatal issues for stable cycling such as dead Li formation, unstable solid electrolyte interphase, electrolyte exhaustion, and internal short-circuit. To overcome this limitation, here, we report a novel dual-salt electrolyte comprising of 0.2 M LiPF6 + 3.8 M lithium bis(fluorosulfonyl)imide in a carbonate/ester co-solvent with 5 wt% fluoroethylene carbonate, 2 wt% vinylene carbonate, and 0.2 wt% LiNO3 additives. Because the dual-salt electrolyte facilitates uniform/dense Li deposition on the current collector and can form robust/ionic conductive LiF-based SEI layer on the deposited Li, a Li/Li symmetrical cell exhibits improved cycling performance and low polarization for over 200 h operation. Furthermore, the anode-free LiFePO4/Cu cells in the carbonate electrolyte shows significantly enhanced cycling stability compared to the counterparts consisting of different salt ratios. This study shows an importance of electrolyte design guiding uniform Li deposition and forming stable SEI layer for AFLMBs.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.