• 제목/요약/키워드: Robust Speed Control System

검색결과 388건 처리시간 0.022초

적응필터와 퍼지제어기를 이용한 유도전동기의 속도센서 없는 벡터제어 (Adaptive filter and Fuzzy Controller for Speed Sensor-Less Vector Control of Induction Motor)

  • 김상욱;양이우;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.273-276
    • /
    • 1994
  • It has been known the fact that extended Kalman filter (EKF) is correctly capable of estimating system parameters and state variables by eliminating virtually all influences of structural noises, and fuzzy controller is robust to parameter variations. this paper presents a design method of Reduced-Order EKF and fuzzy controller which consists of the rotor speed and the rotor flux estimation only by measuring stator currents. Experiment results show that both the rotor speed and the rotor flux can be prominently estimated in a wide range of the speed.

  • PDF

부하관성모멘트 변화를 보상한 유도전동기의 퍼지 PI 속도제어 (Fuzzy PI Speed Controller of Induction Motor Compensation the Variation of Load Inertia)

  • Cho, Soon-Bong;Hyun, Dong-Seok
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.233-243
    • /
    • 1994
  • Generally, fuzzy PI controller that regulates the gains using fuzzy algorithm shows high performance in speed response. However, it has some problems to the load inertia variation, because the change of speed error(CE) is in a fixed range. As load inertia increases, CE is decreased and the usuage of fuzzy table is limited. Therefore, the output of the fuzzy controller has a limited range. This paper proposes an improved fuzzy PI controller. To reduce the speed overshoot, we adapt a control method that selects a proper CE range with respect to the load inertia variation. The proposed controller is applied to the vector controlled system with 2.2kW induction motor. Some simulation and experimental results are exhibited. With these results, we can easily find that proposed PI controller is more robust than the conventional fuzzy PI controller against the load inertia variation.

불확실한 상태 천이를 가진 입력/상태 비동기 머신을 위한 견실 제어 (Robust Control of Input/state Asynchronous Machines with Uncertain State Transitions)

  • 양정민
    • 전자공학회논문지SC
    • /
    • 제46권4호
    • /
    • pp.39-48
    • /
    • 2009
  • 전역 클럭 없이 동작하는 비동기 순차 머신은 동기 순차 머신에 비해서 속도나 에너지 소비 면에서 장점을 지닌다. 본 논문에서는 불확실한 상태 천이를 가지는 입력/상태 비동기 머신을 위한 견실 제어기를 제안한다. 논문에서 고려하는 비동기 머신은 모델 불확실성, 내부 고장 등으로 인해서 일부 영역의 상태 천이 함수가 불확실하다. 이번 연구에서는 이러한 비동기 머신을 표현하는 유한 상태 머신 식을 제안한 후 일반화된 도달가능성 행렬을 이용하여 머신의 폐루프 동작이 주어진 정상적인 모델의 동작과 일치하도록 하는 비동기 제어기가 존재할 조건을 규명한다. 또한 기존 연구 결과를 바탕으로 비동기 제어기의 설계 과정을 기술하고 폐루프 시스템의 안정 상태 동작을 분석한다.

Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구 (A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory)

  • 이관열;이형복;김영배
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • ;;;;김상봉
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

적응백스테핑기법을 이용한 비선형시스템 강인제어 (Robust Control of Nonlinear System using Adaptive Backstepping Technique)

  • 현근호;김동헌;김응석;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2087-2088
    • /
    • 2001
  • In this paper we presents a speed controller for permanent magnet synchronous motor using adaptive backstepping technique. The adaptive backstepping technique takes system nonlinearity into account in the control system design stage. The proposed control and adaptive law is proved to be asymptotically stable by the Lyapunov stability theory.

  • PDF

DFIG의 전류 측정오차로 인한 발전전력의 리플 저감에 관한 연구 (Reduction of Power Ripples in a Doubly Fed Induction Generator Under Current Measurement Errors)

  • 김영일;김장목;황선환;김찬기;최영도
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.103-107
    • /
    • 2007
  • In doubly fed induction generators (DFIGs), control of rotor currents allows for adjustable speed operation, active, and reactive power control. This paper presents a DFIG control strategy that enhances the active and reactive power control with controllers that can compensate for the errors caused by current measurement path in the DFIG system. The errors can be divided into two categories: offset and scaling errors. These can induce the speed, active, and reactive power pulsations, which are one and two times the fundamental slip frequency in the DFIG. And these undesirable ripples can do the DFIG harm. In this paper, a new compensation algorithm is proposed. Therefore, the proposed algorithm has several advantages: to implement is easy; it require less computation time; it is robust with regard to the variation of the induction generator parameters. In this paper, a new algorithm is introduced by using the integral of phase currents to measure the current ripples of rotor-side converterin the DFIG system. The experiment results are shown the effectiveness of the proposed method.

  • PDF

인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과 (Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

앞선각 제어를 위한 단상 SRM 회전자설계 (Rotor Design of Single Phase Switched Reluctance Motor for Advance Angle Control)

  • 오주환;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.92-94
    • /
    • 2006
  • Single phase switched reluctance motor has a high speed capability, due to its very robust rotor, and requires only one electronic power switch in its control circuitry. The latter feature considerably reduces the cost of the drive system. But it involves starting problem and strongly torque ripple, which means that the motor is not suitable for application that require constant torque or speed. To solve torque ripple and region of these problem, this paper presents a single phase Switched Reluctance Motor model with a barrier rotor pole. Also it is simulated the designed prototype model by FEM for the prediction of characteristics.

  • PDF