• 제목/요약/키워드: Robust Observer

검색결과 445건 처리시간 0.027초

A ROBUST VECTOR CONTROL FOR PARAMETER VARIATIONS OF INDUCTION MOTOR

  • Park, Jee-ho;Cho, Yong-Kil;Woo, Jung-In;Ahn, In-Mo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.330-335
    • /
    • 1998
  • In this paper the robust vector control method of induction motor for the purpose of improving the system performance deterioration caused by parameter variations is proposed. The estimations of the stator current and the rotor flux are obtained by the full order state observer with corrective prediction error feedback. and the adaptive scheme is constructed to estimate the rotor speed with the error signal between real and estimation value of the stator current. Adaptive sliding observer based on the variable structure control is applied to parameter identification. Consequently predictive current control and speed sensorless vector control can be obtained simultaneously regardless of the parameter variations.

  • PDF

슬라이딩 모드 관측기를 가지는 가변구조제어를 사용한 직접구동용 브러쉬없는 직류전동기의 강인한 위치제어 (A Robust Position Control of a Brushless Direct Drive Motor Using a Variable Structure Control with Sliding Mode Observer)

  • 정세교;홍찬호;이대식;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1041-1043
    • /
    • 1993
  • A robust position control scheme for a Brushless Direct Drive Motor(BLDDM) is presented. To obtain the robustness under the load variation, a Variable Structure Controller(VSC) is used. However, the VSC has a chattering problem and require the full state informations. To overcome this problem, in this paper, the sliding mode observer is used for compensating the load disturbance and estimating the motor velocity. As a result, the VSC for a BLDDM posision control is designed by using only position measurment and the chattering problem is greatly reduced. To show the validaty of the proposed scheme, the simulation study is carried out.

  • PDF

선형 동기 모터의 정밀모션 제어 (High-accuracy Motion Control of Linear Synchronous Motor)

  • 정승현;성준엽;박정일
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, the pole placement controller based on the Robust Internal-loop Compensator (RIC) structure, which has inherent structural equivalence to disturbance observer, is proposed to control a linear positioning system. This controller has the advantage to easily select controller gains by using pole placement without loss of that of original RIC structure. The principal is to construct the pole placement controller for a nominal internal model instead of unknown real plant. Using linear motion experiment showed the effectiveness of the proposed controller.

Robust Predictive Speed Control for SPMSM Drives Based on Extended State Observers

  • Xu, Yanping;Hou, Yongle;Li, Zehui
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.497-508
    • /
    • 2019
  • The predictive speed control (PSC) strategy can realize the simultaneous control of speed and current by using one cost function. As a model-based control method, the performance of the PSC is vulnerable to model mismatches such as load torque disturbances and parameter uncertainties. To solve this problem, this paper presents a robust predictive speed control (RPSC) strategy for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed RPSC uses extended state observers (ESOs) to estimate the lumped disturbances caused by load torque changes and parameter mismatches. The observer-based prediction model is then compensated by using the estimated disturbances. The introduction of ESOs can achieve robustness against predictive model uncertainties. In addition, a modified cost function is designed to further suppress load torque disturbances. The performance of the proposed RPSC scheme has been corroborated by experimental results under the condition of load torque changes and parameter mismatches.

유도전동기 운전에 대한 외란상쇄 상태 관측기 설계 (Design of Disturbance Cancellation State Observer for Driving Induction Motor)

  • 김용주;서영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1088-1090
    • /
    • 2002
  • This paper described a robust control of an induction motor using a disturbance cancellation observer of a feedforward control. The speed response of conventional PI controller characteristic is affected by variations of load torque disturbance. In the proposed system. the speed control characteristic using a feedforward control isn't affected by a load torque disturbance.

  • PDF

신경망 외란 관측기를 이용한 교류 전동 모터의 강인 제어

  • 현창호;김은태;박민용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2783-2786
    • /
    • 2003
  • In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Therefore the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is rallied out to verify the effectiveness of the proposed method.

  • PDF

부하토크 피드포워드 제어를 이용한 유도전동기의 속도제어 (Speed Control of Induction Motors Using Load Torque Feedforward Control)

  • 서영수;성대용;임영배
    • 전력전자학회논문지
    • /
    • 제3권2호
    • /
    • pp.99-106
    • /
    • 1998
  • This paper proposed a speed control system for induction motors robust to variations in torque and parameters by feedforward compensating the current portion of load torque, adding a load torque observer to the conventional PI controller in the indirect vector controlled induction motor system. Computer simulations and exeperimental works using the proposed control confirm that the transient response for the variation of the reference speed and load torque becomes improved, compared with the conventional PI controled method.

Advanced Disturbance Observer Design

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.95.2-95
    • /
    • 2001
  • Disturbance observer(DOB) based controller design is one of the most popular methods in the field of motion control. In this paper, a generalized disturbance compensation framework, called as robust internal-loop compensator(RIC) is introduced and an advanced design method of DOB is proposed based on the RIC. Mixed sensitivity optimization problem, which is the main issue of DOB design, is solved through the parameterization of DOB in the RIC framework. Different from conventional methods, Q-filter is separated in the mixed sensitivity optimization problem and the systematic design law for the DOB is proposed. This guarantees the robustness and optimality of the DOB and also enables the design for unstable plants.

  • PDF

Robust Friction Compensation Control Using a Nonliner Observer

  • Nakamura, Yuichiro;Niwa, Shohei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.108.5-108
    • /
    • 2001
  • The research of friction compensation control system seeks the accuracy, the velocity increase of the table, and the settling time reduction. The friction is the disturbance which has the greatest influence, but the past research of control system doesn´t perform exact modeling of the friction. So this research aims at the friction compensation control system, the exact modeling of the friction, comparison between the model simulation and experimental data, and the design of observer for the friction estimation.

  • PDF

스위칭 동태방정식을 이용한 선형 다변수서보메카니즘에 대한 견고한 제어기 설계 (The robust controller design for linear multivariable servo mechanism using switching dynamics)

  • 박귀태;곽군평;김동식;최중경;주영중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.535-540
    • /
    • 1989
  • This paper presents an approach for designing a linear multivariable servo mechanism for the case of constant and time varying disturbances. In this paper, we use an "observer-based" approach to consider the disturbance vector as states of the system and the resulting servomechanism design involves the design of an asymptotic observer which estimates both the actual plant states and the disturbance states. The design makes use of switching dynamics instead of switching logics to obtain the sliding mode and from the switching dynamics we can remove the undesirable chattering phenomena.phenomena.

  • PDF