• 제목/요약/키워드: Robust Feature

검색결과 874건 처리시간 0.023초

음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출 (Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments)

  • 홍정표;박상준;정상배;한민수
    • 말소리와 음성과학
    • /
    • 제5권1호
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

A Robust Content-Based Music Retrieval System

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.229-232
    • /
    • 2004
  • In this paper, we propose a robust music retrieval system based on the content analysis of music. New feature extraction method called Multi-Feature Clustering (MFC) is proposed for the robust and optimum performance of the music retrieval system. It is demonstrated that the use of MFC significantly improves the system stability of music retrieval with better classification accuracy.

  • PDF

초음파 데이터를 이용한 강인한 형상 검출기 개발 (Development of Robust Feature Detector Using Sonar Data)

  • 이세진;임종환;조동우
    • 한국정밀공학회지
    • /
    • 제25권2호
    • /
    • pp.35-42
    • /
    • 2008
  • This study introduces a robust feature detector for sonar data from a general fixed-type of sonar ring. The detector is composed of a data association filter and a feature extractor. The data association filter removes false returns provided frequently from sonar sensors, and classifies set of data from various objects and robot positions into a group in which all the data are from the same object. The feature extractor calculates the geometries of the feature for the group. We show the possibility of extracting circle feature as well as a line and a point features. The proposed method was applied to a real home environment with a real robot.

잡음 환경에서의 음성 감정 인식을 위한 특징 벡터 처리 (Feature Vector Processing for Speech Emotion Recognition in Noisy Environments)

  • 박정식;오영환
    • 말소리와 음성과학
    • /
    • 제2권1호
    • /
    • pp.77-85
    • /
    • 2010
  • This paper proposes an efficient feature vector processing technique to guard the Speech Emotion Recognition (SER) system against a variety of noises. In the proposed approach, emotional feature vectors are extracted from speech processed by comb filtering. Then, these extracts are used in a robust model construction based on feature vector classification. We modify conventional comb filtering by using speech presence probability to minimize drawbacks due to incorrect pitch estimation under background noise conditions. The modified comb filtering can correctly enhance the harmonics, which is an important factor used in SER. Feature vector classification technique categorizes feature vectors into either discriminative vectors or non-discriminative vectors based on a log-likelihood criterion. This method can successfully select the discriminative vectors while preserving correct emotional characteristics. Thus, robust emotion models can be constructed by only using such discriminative vectors. On SER experiment using an emotional speech corpus contaminated by various noises, our approach exhibited superior performance to the baseline system.

  • PDF

시점 변화에 강인한 특징점 정합 기법 (Feature Matching Algorithm Robust To Viewpoint Change)

  • 정현조;유지상
    • 한국통신학회논문지
    • /
    • 제40권12호
    • /
    • pp.2363-2371
    • /
    • 2015
  • 본 논문에서는 FAST(Features from Accelerated Segment Test) 특징점 검출기와 SIFT(Scale Invariant Feature Transform) 특징점 서술자(descriptor)를 사용하여 시점 변화에 강인한 특징점 정합 기법을 제안한다. 기존의 FAST 기법은 영상의 에지 부분을 따라서 불필요하게 특징점을 많이 추출하게 되는데 이러한 단점을 주곡률(principal curvatures)을 적용하여 개선한다. 추출된 특징점을 SIFT 서술자를 통해 기술하고 시점이 다른 두 영상으부터 구해진 정합쌍에 RANSAC(RANdom SAmple Consensus) 기법을 통하여 호모그래피(homography)를 계산한다. 시점 변화에 강인한 특징점 정합을 위해서 기준 영상의 특징점들을 호모그래피 변환을 통해 변경된 좌표와 시점이 다른 영상의 특징점 좌표간의 유클리디언(Euclidean) 거리를 통해 정합쌍을 분류한다. 같은 물체나 장소에 대해 시점이 변화된 여러 영상에 대한 실험을 통해서 제안하는 정합 기법이 적은 계산량으로 기존의 특징점 정합 기법보다 우수한 성능을 보여주는 것을 확인하였다.

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF

Robust Watermarking Scheme Based on Radius Weight Mean and Feature-Embedding Technique

  • Yang, Ching-Yu
    • ETRI Journal
    • /
    • 제35권3호
    • /
    • pp.512-522
    • /
    • 2013
  • In this paper, the radius weight mean (RWM) and the feature-embedding technique are used to present a novel watermarking scheme for color images. Simulations validate that the stego-images generated by the proposed scheme are robust against most common image-processing operations, such as compression, color quantization, bit truncation, noise addition, cropping, blurring, mosaicking, zigzagging, inversion, (edge) sharpening, and so on. The proposed method possesses outstanding performance in resisting high compression ratio attacks: JPEG2000 and JPEG. Further, to provide extra hiding storage, a steganographic method using the RWM with the least significant bit substitution technique is suggested. Experiment results indicate that the resulting perceived quality is desirable, whereas the peak signal-to-noise ratio is high. The payload generated using the proposed method is also superior to that generated by existing approaches.

가중 ARMA 필터를 이용한 강인한 음성인식 (Robust Speech Recognition Using Weighted Auto-Regressive Moving Average Filter)

  • 반성민;김형순
    • 말소리와 음성과학
    • /
    • 제2권4호
    • /
    • pp.145-151
    • /
    • 2010
  • In this paper, a robust feature compensation method is proposed for improving the performance of speech recognition. The proposed method is incorporated into the auto-regressive moving average (ARMA) based feature compensation. We employ variable weights for the ARMA filter according to the degree of speech activity, and pass the normalized cepstral sequence through the weighted ARMA filter. Additionally when normalizing the cepstral sequences in training, the cepstral means and variances are estimated from total training utterances. Experimental results show the proposed method significantly improves the speech recognition performance in the noisy and reverberant environments.

  • PDF

위치이동에 무관한 웨이블릿 변환을 이용한 패턴인식 (Patterns Recognition Using Translation-Invariant Wavelet Transform)

  • 김국진;조성원;김재민;임철수
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.281-286
    • /
    • 2003
  • 웨이블릿 변환(Wavelet Transform)은 공간-주파수 영역에서 신호의 국소특성을 효율적으로 구현할 수 있다 하지만, 웨이블릿 변환을 패턴 인식을 위한 특징 추출에 적용할 경우, 입력 신호의 위치 이동에 따라 추출된 특징 값이 변화하게 되어 인식률이 낮아지는 결함이 있다. 본 논문에서는 웨이블릿 변환을 패턴 인식에 적용할 경우 발생하는 입력 신호의 위치 이동에 따른 문제점을 보완하여 노이즈에 강인한 홍채인식 알고리즘을 제안한다. 실험을 통하여 제안한 알고리즘의 우수성을 보여 준다.

Study on a Robust Object Tracking Algorithm Based on Improved SURF Method with CamShift

  • Ahn, Hyochang;Shin, In-Kyoung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, surveillance systems are widely used, and one of the key technologies in this surveillance system is to recognize and track objects. In order to track a moving object robustly and efficiently in a complex environment, it is necessary to extract the feature points in the interesting object and to track the object using the feature points. In this paper, we propose a method to track interesting objects in real time by eliminating unnecessary information from objects, generating feature point descriptors using only key feature points, and reducing computational complexity for object recognition. Experimental results show that the proposed method is faster and more robust than conventional methods, and can accurately track objects in various environments.