Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.5
/
pp.997-1008
/
2022
Today, AI(Artificial Intelligence) technology is being extensively researched in various fields, including the field of malware detection. To introduce AI systems into roles that protect important decisions and resources, it must be a reliable AI model. AI model that dependent on training dataset should be verified to be robust against new attacks. Rather than generating new malware detection, attackers find malware detection that succeed in attacking by mass-producing strains of previously detected malware detection. Most of the attacks, such as adversarial attacks, that lead to misclassification of AI models, are made by slightly modifying past attacks. Robust models that can be defended against these variants is needed, and the Robustness level of the model cannot be evaluated with accuracy and recall, which are widely used as AI evaluation indicators. In this paper, we experiment a framework to evaluate robustness level by generating an adversarial sample based on one of the adversarial attacks, C&W attack, and to improve robustness level through adversarial training. Through experiments based on malware dataset in this study, the limitations and possibilities of the proposed method in the field of malware detection were confirmed.
Artificial intelligence (AI) techniques are now being considered in the nuclear field, but application faces with the lack of actual plant data. For this reason, most previous studies on AI applications in nuclear power plants (NPPs) have relied on simulators or thermal-hydraulic codes to mimic the plants. However, it remains uncertain whether an AI model trained using a simulator can properly work in an actual NPP. To address this issue, this study suggests the use of metadata, which can give information about parameter trends. Referred to here as robust AI, this concept started with the idea that although the absolute value of a plant parameter differs between a simulator and actual NPP, the parameter trend is identical under the same scenario. Based on the proposed robust AI, this study designs an event diagnosis algorithm to classify abnormal and emergency scenarios in NPPs using prototypical learning. The algorithm was trained using a simulator referencing a Westinghouse 990 MWe reactor and then tested in different environments in Advanced Power Reactor 1400 MWe simulators. The algorithm demonstrated robustness with 100 % diagnostic accuracy (117 out of 117 scenarios). This indicates the potential of the robust AI-based algorithm to be used in actual plants.
Journal of the Korea Institute of Military Science and Technology
/
v.27
no.4
/
pp.474-484
/
2024
Reinforcement learning, which are also studied in the field of defense, face the problem of sample efficiency, which requires a large amount of data to train. Transfer learning has been introduced to address this problem, but its effectiveness is sometimes marginal because the model does not effectively leverage prior knowledge. In this study, we propose a stochastic initial state randomization(SISR) method to enable robust knowledge transfer that promote generalized and sufficient knowledge transfer. We developed a simulation environment involving a cooperative robot transportation task. Experimental results show that successful tasks are achieved when SISR is applied, while tasks fail when SISR is not applied. We also analyzed how the amount of state information collected by the agents changes with the application of SISR.
Young-Ik Kim;Hyun Jo Jung;Minsoo Na;Younghyun Lee;Joonsoo Lee
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.136-138
/
2022
스포츠 방송/미디어 데이터에서 특정 이벤트 시점을 효율적으로 검출하는 방법은 정보 검색이나 하이라이트, 요약 등을 위해 중요한 기술이다. 이 논문에서는, 야구 중계 방송 데이터에서 투구에 대한 타격 및 포구 이벤트 시점을 강인하게 검출하는 방법으로, 음향 및 영상 정보를 융합하는 방법에 대해 제안한다. 음향 정보에 기반한 이벤트 검출 방법은 계산이 용이하고 정확도가 높은 반면, 영상 정보의 도움 없이는 모호성을 해결하기 힘든 경우가 많이 발생한다. 특히 야구 중계 데이터의 경우, 투수의 투구 시점에 대한 영상 정보를 활용하여 타격 및 포구 이벤트 검출의 정확도를 보다 향상시킬 수 있다. 이 논문에서는 음향 기반의 딥러닝 이벤트 시점 검출 모델과 영상 기반의 보정 방법을 제안하고, 실제 KBO 야구 중계 방송 데이터에 적용한 사례와 실험 결과에 대해 기술한다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.337-340
/
2024
Pretrained language models (PLMs) are extensively utilized to enhance the performance of log anomaly detection systems. Their effectiveness lies in their capacity to extract valuable semantic information from logs, thereby strengthening the detection performance. Nonetheless, challenges arise due to discrepancies in the distribution of log messages, hindering the development of robust and generalizable detection systems. This study investigates the structural and distributional variation across various log message datasets, underscoring the crucial role of domain-specific PLMs in overcoming the said challenge and devising robust and generalizable solutions.
Major global powers are investing heavily in artificial intelligence (AI) and hyper-connected networks, demonstrating their crucial role in future warfare. To advance and utilize AI in national defense, it is essential to have policy support at the governmental or national level. This includes establishing a research and development infrastructure, creating a common development environment, and fostering AI expertise through education and training programs. To achieve advancements in hyper-connected networks, it is essential to establish a foundation for a robust and resilient infrastructure by comprehensively building integrated satellite, aerial, and ground networks, along with developing 5G & edge computing and low-orbit satellite communication technologies. This multi-faceted approach will ensure the successful integration of AI and hyper-connected networks, strengthening national defense and positioning nations at the forefront of technological advancements in warfare.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.41-46
/
2021
기계 독해는 문단과 질문이 주어질 때에 정답을 맞추는 자연어처리의 연구분야다. 최근 기계 독해 모델이 사람보다 높은 성능을 보여주고 있지만, 문단과 질의가 크게 변하지 않더라도 예상과 다른 결과를 만들어 성능에 영향을 주기도 한다. 본 논문에서는 문단과 질문 두 가지 관점에서 적대적 예시 데이터를 사용하여 보다 강건한 질의응답 모델을 훈련하는 방식을 제안한다. 트랜스포머 인코더 모델을 활용하였으며, 데이터를 생성하기 위해서 KorQuAD 1.0 데이터셋에 적대적 예시를 추가하여 실험을 진행하였다. 적대적 예시를 이용한 데이터로 실험한 결과, 기존 모델보다 1% 가량 높은 성능을 보였다. 또한 질의의 적대적 예시 데이터를 활용하였을 때, 기존 KorQuAD 1.0 데이터에 대한 성능 향상을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.557-560
/
2023
In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT) for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the potential of our methodology in enhancing automated disease diagnosis in fundus imaging.
Si-on Jeong;Tae-hyun Han;Seung-bum Lim;Tae-jin Lee
Journal of Internet Computing and Services
/
v.24
no.4
/
pp.25-36
/
2023
Today, as AI (Artificial Intelligence) technology is introduced in various fields, including security, the development of technology is accelerating. However, with the development of AI technology, attack techniques that cleverly bypass malicious behavior detection are also developing. In the classification process of AI models, an Adversarial attack has emerged that induces misclassification and a decrease in reliability through fine adjustment of input values. The attacks that will appear in the future are not new attacks created by an attacker but rather a method of avoiding the detection system by slightly modifying existing attacks, such as Adversarial attacks. Developing a robust model that can respond to these malware variants is necessary. In this paper, we propose two methods of generating Adversarial attacks as efficient Adversarial attack generation techniques for improving Robustness in AI models. The proposed technique is the XAI-based attack technique using the XAI technique and the Reference based attack through the model's decision boundary search. After that, a classification model was constructed through a malicious code dataset to compare performance with the PGD attack, one of the existing Adversarial attacks. In terms of generation speed, XAI-based attack, and reference-based attack take 0.35 seconds and 0.47 seconds, respectively, compared to the existing PGD attack, which takes 20 minutes, showing a very high speed, especially in the case of reference-based attack, 97.7%, which is higher than the existing PGD attack's generation rate of 75.5%. Therefore, the proposed technique enables more efficient Adversarial attacks and is expected to contribute to research to build a robust AI model in the future.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.4
/
pp.229-237
/
2023
In this research, a new Test and Evaluation (T&E) procedure for defense AI systems is proposed to fill the existing gap in established methodologies. This proposed concept incorporates a data-based performance evaluation, allowing for independent assessment of AI model efficacy. It then follows with an on-site T&E using the actual AI system. The performance evaluation approach adopts the project promotion framework from the defense acquisition system, outlining 10 steps for R&D projects and 9 steps for procurement projects. This procedure was crafted after examining AI system testing standards and guidelines from both domestic and international civilian sectors. The validity of each step in the procedure was confirmed using real-world data. This study's findings aim to offer insightful guidance in defense T&E, particularly in developing robust T&E procedures for defense AI systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.