• Title/Summary/Keyword: Robust 제어

Search Result 2,847, Processing Time 0.035 seconds

Bayesian Inference driven Behavior-Network Architecture for Intelligent Agent to Avoid Collision with Moving Obstacles (지능형 에이전트의 움직이는 장애물 충돌 회피를 위한 베이지안 추론 주도형 행동 네트워크 구조)

  • 민현정;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1073-1082
    • /
    • 2004
  • This paper presents a technique for an agent to adaptively behave to unforeseen and dynamic circumstances. Since the traditional methods utilized the information about an environment to control intelligent agents, they were robust but could not behave adaptively in a complex and dynamic world. A behavior-based method is suitable for generating adaptive behaviors within environments, but it is necessary to devise a hybrid control architecture that incorporates the capabilities of inference, learning and planning for high-level abstract behaviors. This Paper proposes a 2-level control architecture for generating adaptive behaviors to perceive and avoid dynamic moving obstacles as well as static obstacles. The first level is behavior-network for generating reflexive and autonomous behaviors, and the second level is to infer dynamic situation of agents. Through simulation, it has been confirmed that the agent reaches a goal point while avoiding static and moving obstacles with the proposed method.

Design of Tone-Controlled CI/OFDM Communication System and Improvement of BER Performance by IMD Reduction (톤 제어 방식의 CI/OFDM 통신 시스템 설계와 IMD 저감을 이용한 BER 성능 향상)

  • Kim, Seon-Ae;Lee, Il-Jin;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.363-371
    • /
    • 2009
  • OFDM(orthogonal frequency division multiplexing) is very effective forhigh data rate transmission system. However, communication performance becomes worse because of nonlinear distortion resulting from the PAPR. In this paper, we like to propose a tone-controlled CI/OFDM system including the TMD (inter-modulation distortion) reduction method in order to improve the BER performance. In this tone-controlled CI/OFDM system, control tone is additionally inserted in each data symbol of CI/OFDM system to make the CI/OFDM lower the PAPR and robust to nonlinear distortion. So, tone-controlled CI/OFDM using the IMD reduction method shows better BER (bit error rate) performance than methods based on PAPR reduction.

Phase Control Loop Design based on Second Order PLL Loop Filter for Solid Type High Q-factor Resonant Gyroscope (고체형 정밀 공진 자이로스코프를 위한 이차 PLL 루프필터 기반 위상제어루프 설계)

  • Park, Sang-Jun;Yong, Ki-Ryeok;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.546-554
    • /
    • 2012
  • This paper suggests a design method of an improved phase control loop for tracking resonant frequency of solid type precision resonant gyroscope. In general, a low cost MEMS gyroscope adapts the automatic gain control loops by taking a velocity feedback configuration. This control technique for controlling the resonance amplitude shows a stable performance. But in terms of resonant frequency tracking, this technique shows an unreliable performance due to phase errors because the AGC method cannot provide an active phase control capability. For the resonance control loop design of a solid type precision resonant gyroscope, this paper presents a phase domain control loop based on linear PLL (Phase Locked Loop). In particular, phase control loop is exploited using a higher order PLL loop filter by extending the first order active PI (Proportion-Integral) filter. For the verification of the proposed loop design, a hemispherical resonant gyroscope is considered. Numerical simulation result demonstrates that the control loop shows a robust performance against initial resonant frequency gap between resonator and voltage control oscillator. Also it is verified that the designed loop achieves a stable oscillation even under the initial frequency gap condition of about 25 Hz, which amounts to about 1% of the natural frequency of a conventional resonant gyroscope.

Chattering Free Sliding Mode Control of Upper-limb Rehabilitation Robot with Handling Subject and Model Uncertainties (환자와 로봇의 모델 불확도를 고려한 상지재활로봇의 채터링 없는 슬라이딩 모드 제어)

  • Khan, Abdul Manan;Yun, Deok-Won;Han, Changsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.421-426
    • /
    • 2015
  • Need to develop human body's posture supervised robots, gave the push to researchers to think over dexterous design of exoskeleton robots. It requires to develop quantitative techniques to assess human motor function and generate the command to assist in compliance with complex human motion. Upper limb rehabilitation robots, are one of those robots. These robots are used for the rehabilitation of patients having movement disorder due to spinal or brain injuries. One aspect that must be fulfilled by these robots, is to cope with uncertainties due to different patients, without significantly degrading the performance. In this paper, we propose chattering free sliding mode control technique for this purpose. This control technique is not only able to handle matched uncertainties due to different patients but also for unmatched as well. Using this technique, patients feel active assistance as they deviate from the desired trajectory. Proposed methodology is implemented on seven degrees of freedom (DOF) upper limb rehabilitation robot. In this robot, shoulder and elbow joints are powered by electric motors while rest of the joints are kept passive. Due to these active joints, robot is able to move in sagittal plane only while abduction and adduction motion in shoulder joint is kept passive. Exoskeleton performance is evaluated experimentally by a neurologically intact subjects while varying the mass properties. Results show effectiveness of proposed control methodology for the given scenario even having 20 % uncertain parameters in system modeling.

Adaptive Congestion Control Scheme of TCP for Supporting ACM in Satellite PEP System (위성 PEP시스템에서 ACM 지원을 위한 적응형 TCP 혼잡제어기법)

  • Park, ManKyu;Kang, Dongbae;Oh, DeockGil
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Currently satellite communication systems usually use the ACM(Adaptive Coding and Modulation) to extend the link availability and to increase the bandwidth efficiency. However, when ACM system is used for satellite communications, we should carefully consider TCP congestion control to avoid network congestions. Because MODCODs in ACM are changed to make a packet more robust according to satellite wireless link conditions, bandwidth of satellite forward link is also changed. Whereas TCP has a severe problem to control the congestion window for the changed bandwidth, then packet overflow can be experienced at MAC or PHY interface buffers. This is a reason that TCP in transport layer does not recognize a change of bandwidth capability form MAC or PHY layer. To overcome this problem, we propose the adaptive congestion control scheme of TCP for supporting ACM in Satellite PEP (Performance Enhancing Proxy) systems. Simulation results by using ns-2 show that our proposed scheme can be efficiently adapted to the changed bandwidth and TCP congestion window size, and can be useful to improve TCP performance.

Intelligent Control of a Virtual Walking Machine for Virtual Reality Interface (가상현실 대화용 가상걸음 장치의 지능제어)

  • Yoon, Jung-Won;Park, Jang-Woo;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • This paper proposes intelligent control of a virtual walking machine that can generate infinite floor for various surfaces and can provide proprioceptive feedback of walking to a user. This machine allows users to participate in a life-like walking experience in virtual environments with various terrains. The controller of the machine is implemented hierarchically, at low-level for robust actuator control, at mid-level fur platform control to compensate the external forces by foot contact, and at high-level control for generating walking trajectory. The high level controller is suggested to generate continuous walking on an infinite floor for various terrains. For the high level control, each independent platform follows a man foot during the swing phase, while the other platform moves back during single stance phase. During double limb support, two platforms manipulate neutral positions to compensate the offset errors generated by velocity changes. This control can, therefore, satisfy natural walking conditions in any direction. Transition phase between the swing and the stance phases is detected by using simple switch sensor system, while human foot motions are sensed by careful calibration with a magnetic motion tracker attached to the shoe. Experimental results of walking simulations at level ground, slope, and stairs, show that with the proposed machine, a general person can walk naturally on various terrains with safety and without any considerable disturbances. This interface can be applied to various areas such as VR navigations, rehabilitation, and gait analysis.

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.

Implementation of An Unmanned Visual Surveillance System with Embedded Control (임베디드 제어에 의한 무인 영상 감시시스템 구현)

  • Kim, Dong-Jin;Jung, Yong-Bae;Park, Young-Seak;Kim, Tae-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • In this paper, a visual surveillance system using SOPC based NIOS II embedded processor and C2H compiler was implemented. In this system, the IP is constructed by C2H compiler for the output of the camera images, image processing, serial communication and network communication, then, it is implemented to effectively control each IP based on the SOPC and the NIOS II embedded processor. And, an algorithm which updates the background images for high speed and robust detection of the moving objects is proposed using the Adaptive Gaussian Mixture Model(AGMM). In results, it can detecte the moving objects(pedestrians and vehicles) under day-time and night-time. It is confirmed that the proposed AGMM algorithm has better performance than the Adaptive Threshold Method(ATM) and the Gaussian Mixture Model(GMM) from our experiments.

Swarm Based Robust Object Tracking Algorithm Using Adaptive Parameter Control (적응적 파라미터 제어를 이용하는 스웜 기반의 강인한 객체 추적 알고리즘)

  • Bae, Changseok;Chung, Yuk Ying
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.39-50
    • /
    • 2017
  • Moving object tracking techniques can be considered as one of the most essential technique in the video understanding of which the importance is much more emphasized recently. However, irregularity of light condition in the video, variations in shape and size of object, camera motion, and occlusion make it difficult to tracking moving object in the video. Swarm based methods are developed to improve the performance of Kalman filter and particle filter which are known as the most representative conventional methods, but these methods also need to consider dynamic property of moving object. This paper proposes adaptive parameter control method which can dynamically change weight value among parameters in particle swarm optimization. The proposed method classifies each particle to 3 groups, and assigns different weight values to improve object tracking performance. Experimental results show that our scheme shows considerable improvement of performance in tracking objects which have nonlinear movements such as occlusion or unexpected movement.

3D Facial Animation with Head Motion Estimation and Facial Expression Cloning (얼굴 모션 추정과 표정 복제에 의한 3차원 얼굴 애니메이션)

  • Kwon, Oh-Ryun;Chun, Jun-Chul
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.311-320
    • /
    • 2007
  • This paper presents vision-based 3D facial expression animation technique and system which provide the robust 3D head pose estimation and real-time facial expression control. Many researches of 3D face animation have been done for the facial expression control itself rather than focusing on 3D head motion tracking. However, the head motion tracking is one of critical issues to be solved for developing realistic facial animation. In this research, we developed an integrated animation system that includes 3D head motion tracking and facial expression control at the same time. The proposed system consists of three major phases: face detection, 3D head motion tracking, and facial expression control. For face detection, with the non-parametric HT skin color model and template matching, we can detect the facial region efficiently from video frame. For 3D head motion tracking, we exploit the cylindrical head model that is projected to the initial head motion template. Given an initial reference template of the face image and the corresponding head motion, the cylindrical head model is created and the foil head motion is traced based on the optical flow method. For the facial expression cloning we utilize the feature-based method, The major facial feature points are detected by the geometry of information of the face with template matching and traced by optical flow. Since the locations of varying feature points are composed of head motion and facial expression information, the animation parameters which describe the variation of the facial features are acquired from geometrically transformed frontal head pose image. Finally, the facial expression cloning is done by two fitting process. The control points of the 3D model are varied applying the animation parameters to the face model, and the non-feature points around the control points are changed by use of Radial Basis Function(RBF). From the experiment, we can prove that the developed vision-based animation system can create realistic facial animation with robust head pose estimation and facial variation from input video image.