• 제목/요약/키워드: Robotic

검색결과 1,504건 처리시간 0.026초

Two-module robotic pipe inspection system with EMATs

  • Lee, Jin-Hyuk;Han, Sangchul;Ahn, Jaekyu;Kim, Dae-Hyun;Moon, Hyungpil
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.1041-1063
    • /
    • 2014
  • This work introduces a two-module robotic pipe inspection system with ultrasonic NDE device to evaluate the integrity of pipe structures. The proposed robotic platform has high mobility. The two module mobile robot platform overcomes pipe obstacle structures such as elbow, or T-branch joints by cooperative maneuvers. Also, it can climb up the straight pipeline at a fast speed due to the wheel driven mechanism. For inspection of pipe structure, SH-waves generated by EMAT are applied with additional signal processing methods. A wavelet transform is implemented to extract a meaningful and specific signal from the superposed SH-wave signals. Intensity ratio which is normalized the defect signals intensity by the maximum intensity of directly transmitted signals in the wavelet transforms spectrum is applied to evaluate defects quantitatively. It is experimentally verified that the robotic ultrasonic inspection system with EMAT is capable of non-destructive inspection and evaluation of defects in pipe structure successfully by applying signal processing method based on wavelet transform.

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR WEED CONTROL USING PRECISION CHEMICAL APPLICATION

  • Lee, Won-Suk;David C. Slaughter;D.Ken Giles
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.802-811
    • /
    • 1996
  • Farmers need alternatives for weed control due to the desire to reduce chemicals used in farming. However, conventional mechanical cultivation cannot selectively remove weeds located in the seedline between crop plants and there are no selective heribicides for some crop/weed situations. Since hand labor is costly , an automated weed control system could be feasible. A robotic weed control system can also reduce or eliminate the need for chemicals. Currently no such system exists for removing weeds located in the seedline between crop plants. The goal of this project is to build a real-time , machine vision weed control system that can detect crop and weed locations. remove weeds and thin crop plants. In order to accomplish this objective , a real-time robotic system was developed to identify and locate outdoor plants using machine vision technology, pattern recognition techniques, knowledge-based decision theory, and robotics. The prototype weed control system is composed f a real-time computer vision system, a uniform illumination device, and a precision chemical application system. The prototype system is mounted on the UC Davis Robotic Cultivator , which finds the center of the seedline of crop plants. Field tests showed that the robotic spraying system correctly targeted simulated weeds (metal coins of 2.54 cm diameter) with an average error of 0.78 cm and the standard deviation of 0.62cm.

  • PDF

DESIGN CONCEPT FOR THE RETROFIT KAO 1M ROBOTIC TELESCOPE

  • Han, Won-Yong;Mack, Peter;Park, Jang-Hyun;Jin, Ho;Lee, Woo-Baik;Lee, Chung-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.211-220
    • /
    • 2000
  • Korea Astronomy Observatory(KAO) is working to retrofit its 1m robotic telescope in collaboration with a company (ACE, Astronomical Consultants & Equipment). The telescope system is being totally refurbished to make a fully automatic telescope which can operate in both interactive and fully autonomous robotic modes. Progress has been made in design and manufacturing of the telescope mount, mechanics, and optical performance system tests are being made for re-configured primary and secondary mirrors. The optical system is designed to collect 80% incident light within 0.5 arcsec with f/7.5 Ritchey-Chretien design. The telescope mount is an equatorial fork with a friction drive system. The design allows fully programmable tracking speeds with typical range of 15 arcsec/sec with accuracy of $\pm5$ arcsec/hour. The mount system has integral pointing model software to correct for refraction, and all mechanical errors and misalignments. The pointing model will permit positioning to better than 30 arcsec RMS within $75^{\circ}$ from zenith and 45 arcsec RMS elsewhere on the sky. The software is designed for interactive, remote and robotic modes of operation. In interactive and remote mode the user can manually enter coordinates or retrieve them from a computer file. In robotic mode the telescope controller downloads the coordinates in the order determined by the scheduler. The telescope will be equipped with a CCD camera and will be accessible via the internet.

  • PDF

Versatile robotic platform for structural health monitoring and surveillance

  • Esser, Brian;Huston, Dryver R.
    • Smart Structures and Systems
    • /
    • 제1권4호
    • /
    • pp.325-338
    • /
    • 2005
  • Utilizing robotic based reconfigurable nodal structural health monitoring systems has many advantages over static or human positioned sensor systems. However, creating a robot capable of traversing a variety of civil infrastructures is a difficult task, as these structures each have unique features and characteristics posing a variety of challenges to the robot design. This paper outlines the design and implementation of a novel robotic platform for deployment on ferromagnetic structures as an enabling structural health monitoring technology. The key feature of this design is the utilization of an attachment device which is an advancement of the common magnetic base found in the machine tool industry. By mechanizing this switchable magnetic circuit and redesigning it for light weight and compactness, it becomes an extremely efficient and robust means of attachment for use in various robotic and structural health monitoring applications. The ability to engage and disengage the magnet as needed, the very low power required to do so, the variety of applicable geometric configurations, and the ability to hold indefinitely once engaged make this device ideally suited for numerous robotic and distributed sensor network applications. Presented here are examples of the mechanized variable force magnets, as well as a prototype robot which has been successfully deployed on a large construction site. Also presented are other applications and future directions of this technology.

수중로봇팔의 동역학 모델링과 동적 조작도 해석 (Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms)

  • 전봉환;이지홍;이판묵
    • 제어로봇시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

트러스 구조를 기반으로 한 로봇 발 메커니즘 모델링 및 특성 분석 (Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure)

  • 김병호
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.347-352
    • /
    • 2012
  • 본 논문에서는 보행 로봇을위한 트러스 구조의 로봇 발 메커니즘을 제시한 후, 제시된 로봇 발 메커니즘의 특성을 분석하였다. 제시된 로봇 발 메커니즘은인간의 발의 구조적인 특징을 관찰하여 모델링 되었다. 특히, 인간의 발에 사용되고 있는 뼈대는 트러스로 나타내었고, 뼈대에 연결되어 있는 다양한 인대는 간단한 강성 요소로서 나타내었다. 따라서 이러한 로봇 발은 보행 로봇이 발걸음을 옮기는 과정에서 발에 작용되는 충격을 완화시킬 수 있는 장점을 갖는다. 결과적으로, 제안된 로봇 발 메커니즘은 보행로봇의 보행피로를 줄이는데 기여할 수 있다.

로봇의 회전관절을 위한 케이블 로드를 갖는 유압 구동기 설계 및 구현 (Design and Implementation of the Cable Rod Hydraulic Actuator for Robotic Revolute Joints)

  • 김정영;박상덕;조정산
    • 한국정밀공학회지
    • /
    • 제33권9호
    • /
    • pp.723-730
    • /
    • 2016
  • This paper presents a cable-driven hydraulic actuator named Cable Rod Hydraulic Actuator (CRHA). The cable actuating system is attractive for designing a compact joint in robotic applications since it can be installed remotely from the joint. Recently, cable rods have been used in pneumatic area for inertia reduction. However, designing cable rods in hydraulics is challenging because it is difficult to achieve flexibility and endurance simultaneously under high pressure conditions. In this paper, the cable rod, which consists of a cable and jacket, is proposed to meet both requirements. To design the CRHA, we determined the design parameters, such as cylinder size, and selected the cable rod's material by friction and leakage test. Finally, comparisons experiments about step and frequency responses with conventional hydraulic actuators were performed to assess feasibility for robotic joints, and the results show that the proposed system has good bandwidth and fast response as robotic joints.

협동로봇 시장 진출 성공요인 분석 (Analysis of Factors for the Success in Entry into Cooperation Robot Market)

  • 김신표
    • 산업융합연구
    • /
    • 제15권1호
    • /
    • pp.43-52
    • /
    • 2017
  • Robot refers to machines that recognize the external environment and assess the given situations in order to operate autonomously by imitating the manner in which humans behave. Although Korea still lacks global competitiveness, Korea, as the $4^{th}$ ranked robot manufacturing country in the world, is currently expanding the domains of robots from application in manufacturing to application in service provision. Accordingly, this study aims to analyze the factors for the success in entry into the cooperation robot market among various robotic markets in accordance with the literary research method in consideration for the importance of robot industry that could determine the future national competitiveness. The result of the analysis of the factors for the success in entry into the cooperation robot market, shows that factors including analysis of the trends in manufacturing robot market, strategy for benchmarking of the leading cooperation robot companies, activation of small and medium enterprise-centered cooperation robotic industry, excavation of demands for cooperation robots with focus on automobile, semiconductor and IT industries, utilization of the opportunities provided by government's robotic industry policies and standardization of cooperation robot components, etc. determine whether one will succeed in the market or not. Furthermore, it is believed that fortification of competitiveness of the manufacturing sector through the powerful policy support for the robotic industry at government level and policies on cultivation of new growth engine through specialization of the robotic areas closely related to daily life must be implemented concurrently because it is forecasted that competitiveness in robotics technology will become the criterion for national competitiveness in the future.

  • PDF

아바타 로봇을 위한 3지 로봇 손과 손 자세 맵핑 알고리즘 (3-Finger Robotic Hand and Hand Posture Mapping Algorithm for Avatar Robot)

  • 김승연;성은호;박재흥
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.322-333
    • /
    • 2022
  • The Avatar robot, which is one of the teleoperation robots, aims to enable users to feel the robot as a part of the body to intuitively and naturally perform various tasks. Considering the purpose of the avatar robot, an end-effector identical to a human hand is advantageous, but a robotic hand with human hand level performance has not yet been developed. In this paper we propose a new 3-finger robotic hand with human-avatar hand posture mapping algorithm which were integrated with TOCABI-AVATAR, one of the teleoperation system. Due to the flexible rolling contact joints and tendon driven mechanism applied to the finger, the finger could implement adaptive grasping and absorb the impact force caused by unexpected contacts. In addition, human-avatar hand mapping algorithm using five calibration hand postures propose to compensate physical differences between operators. Using the TOCABI-AVATAR system with the robotic hands and mapping algorithm, the operator can perform 13 out of 16 hand postures of grasping taxonomy and 4 gestures. In addition, using the system, we participated in the ANA AVATAR XPRIZE Semi-final and successfully performed three scenarios which including various social interactions as well as object manipulation.

자율 분산 이동 로봇 시스템을 위한 머신비젼 (Machine Vision for Distributed Autonomous Robotic System)

  • 김대욱;박창현;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.94-97
    • /
    • 2004
  • 독립된 자율로봇에서 머신비젼의 구동을 위해 본 논문에서는 DARS(Distributed Autonomous Robotic System)에 적용하기 위한 디지털 이미지 프로세싱을 연구하고, DARS의 개별 로봇에 이를 임베디드화하는 것을 연구한다. 따라서 로봇을 구동하기 위해 필요한 데이터를 CMOS 카메라로부터 수신하여 영상을 스캔한 후, 원영상을 신경망 알고리즘을 통해 클러스터링하여 필요한 데이터를 추출한다. 또 이를 사용자 컴퓨터 단말기 상에 디스플레이하고, 최종적으로 DARS의 자율 이동 로봇이 영상 데이터를 인지하여 특정한 선택 동작을 수행하도록 한다.

  • PDF