• Title/Summary/Keyword: Robot-show

Search Result 1,268, Processing Time 0.063 seconds

Challenge and Problem of Medical Robot Surgery Research (국내의료로봇의 도전과 과제)

  • Kim, Kwang-Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.271-278
    • /
    • 2009
  • Recently, robot research and development was interesting the inside and outside of the country. Medical robot surgery showed diverse advantages according to advanced technical robot research. Also the academic society, research institute and industry showed concerning to the medical robot system. There is a growing need to introduce medical research for aging society. The surgical landscape is quickly changing because of the major driving force of robotics. Robot system and biomedical engineering research as defined a new engine of development show present ways of future revitalization of medical robot system. Medical robot system will be even more utilized when we keeps trying to combine high biomedical technique, IT research, and robot technique. In this review article, we begin with a short historical review of medical robotics, followed by an overview of clinical applications where robots have been applied.

Development of a Remotely Operated Aerial Robot-kit based on the Balloon (풍선기반 원격조종 공중로봇키트 개발)

  • Kim, Hyun-Sik
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.216-221
    • /
    • 2012
  • Recently, although the need of marine robots being raised in extreme areas, the basis is very deficient. Fortunately, as the robot competition is vitalizing and the need of the robot education is increasing, it is desirable to establish the basis of the R&D and industrialization of marine robots and to train professionals through the development and diffusion of marine robot kits. However, in conventional case, there is no remotely operated aerial robot-kit based on the balloon for the marine robot competition, which has the abilities of the airborne locomotion and obstacle avoidance. To solve this problem, an aerial robot-kit which has the abilities of the airborne locomotion and remote control, is developed. To verify the performance of the developed kit, test and evaluation such as surge, yaw and pitch is performed. The test and evaluation results show that the possibility of the real applications of the developed kit.

Development of Interface software between Robot and F/T Sensor system for Force Control (힘 제어를 위한 로봇과 F/T 센서간의 인터페이스 소프트웨어 개발)

  • 장완식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.48-53
    • /
    • 1997
  • The objective of this paper is to present the development and application of interface software between robot and F/T sensor for force control. The interface software for among the robot controller, F/T sensor, and host PC is based on interrupt-driven method. To show the suitability of developed interface software, writing-task is performed in real time using F/T sensor that mounts on the wrist of the robot and Scara type 4-axis robot.

  • PDF

Vision Based Mobile Robot Control (이동 로봇의 비젼 기반 제어)

  • Kim, Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.63-67
    • /
    • 2011
  • This paper presents the mobile robot control based on vision system. The proposed vision based controller consist of the camera tracking controller and the formation controller. Th e camera controller has the adaptive gain based on IBVS. The formation controller which is designed in the sense of the Lyapunov stability follows the leader. Simluation results show that the proposed vision based mobile robot control is validated for indoor mobile robot applications.

A study on deburring task of robot arm using neural network (신경망을 이용한 ROBOT ARM의 디버링(Deburring) 작업에 관한 연구)

  • 주진화;이경문;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.139-142
    • /
    • 1996
  • This paper presents a method of controlling contact force for deburring tasks. The cope with the nonlinearities and time-varying properties of the robot and the environment, a neural network control theory is applied to design the contact force control system. We show that the contact force between the hand and the contacting surface can be controlled by adjusting the command velocity of a robot hand, which is accomplished by the modeling of a robot and the environment as Mass-Spring-Damper system. Simulation results are shown.

  • PDF

LPD(Linear Parameter Dependent) System Modeling and Control of Two Wheeled Mobile Robot

  • Kang, Jin-Shig
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.76.2-76
    • /
    • 2002
  • Because of the wheeled mobile robot is modeled by nonlinear system framework and controlled by nonlinear algorithms or fuzzy algorithms, the treatment of wheeled mobile robot is very complecate and conservative. In this paper, a new model of two wheeled mobile robot, which is a type of linear system and treated easily, is presented. And we will show that the control algorithms based on the linear system theory is well work to the wheeled mobile robot by simulation and experiment.

  • PDF

Decentralized Adaptive Control of Robot Manipulators (로봇 매니퓰레이터의 분산 적응제어)

  • 이용연;신규현;이수한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.959-962
    • /
    • 2003
  • In this paper, a decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of robot manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot manipulator system is stable, and has excellent trajectory tracking performance.

  • PDF

Design and Implementation of Snake Robot with 8 Module (8개의 모듈로 구성된 뱀 로봇)

  • 박병진;서재용;하상형;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.189-192
    • /
    • 2002
  • This paper has been studied the movement of snake robot. In this paper we developed a simulator to simulate the creeping locomotion of a snake robot. This Robot makes possible to analyze the creeping locomotion with the normal-direction slip coupled to gliding along the tangential direction. Using the nonslip condition of the wheels, the robot gains propulsion by means of constrained forces on the wheels caused by bending the joints. The results of simulations show that smooth lateral undulatory motion is achived.

  • PDF

Automatic Extraction of Stable Visual Landmarks for a Mobile Robot under Uncertainty (이동로봇의 불확실성을 고려한 시각 랜드마크의 자동 추출)

  • 문인혁;조강현;윤형로
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.264-264
    • /
    • 2000
  • In this paper, we propose a method to automatically extract stable visual landmarks from observed data for a mobile robot with stereo vision system. The robot selects as stable landmarks vertical line segments which are distinct and on planar surfaces, because they are expected to be observed reliably from various view-points. When the robot moves, it uses several, less uncertain landmarks for estimating its motion. Experimental results in real scenes show the validity of the proposed method.

  • PDF

A Study on Modeling of Mobile Robot Using Basic Homogeneous Transformation(BHT) (Basic Homogeneous Transformation(BHT)을 이용한 이동로봇 기구학 모델링에 대한 연구)

  • 류신형;이기철;이성렬;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.265-265
    • /
    • 2000
  • In this paper the systematic modeling method of general wheeled mobile robot is proposed. First we show how to describe kinematics properties of wheeled mobile robot in the method formulating constraint equations using Basic Homogeneous Transform(BHT) which is used mainly the kinematics modeling of manipulator, and, under assumption it's provided part of nullvector in given constraint equations, find kinematics model of mobile robot related to actuators in real robot.

  • PDF