• Title/Summary/Keyword: Robot-based Learning

Search Result 482, Processing Time 0.028 seconds

Autonomous Mobile Robot System Design based on a Learning Aritificial Immune Network Structure (인공 면역망 구조 학습에 근거한 자율 이동 로봇 시스템 설계)

  • Lee, Dong-Je;Lee, Min-Joong;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3036-3038
    • /
    • 1999
  • The conventional structure for an action selector of an Autonomous Mobile Robot (AMR) has been criticized for a repeated action. To overcome this problem recently many researches have been focused on the reactive planning systems such as the biological immune system. In this paper, we propose a learning aritificial immune network, the learning method is to use Genetic Algorithm (GA). The computer simulation show that the usefulness of the learning immune network.

  • PDF

Elevator Recognition and Position Estimation based on RGB-D Sensor for Safe Elevator Boarding (이동로봇의 안전한 엘리베이터 탑승을 위한 RGB-D 센서 기반의 엘리베이터 인식 및 위치추정)

  • Jang, Min-Gyung;Jo, Hyun-Jun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.70-76
    • /
    • 2020
  • Multi-floor navigation of a mobile robot requires a technology that allows the robot to safely get on and off the elevator. Therefore, in this study, we propose a method of recognizing the elevator from the current position of the robot and estimating the location of the elevator locally so that the robot can safely get on the elevator regardless of the accumulated position error during autonomous navigation. The proposed method uses a deep learning-based image classifier to identify the elevator from the image information obtained from the RGB-D sensor and extract the boundary points between the elevator and the surrounding wall from the point cloud. This enables the robot to estimate the reliable position in real time and boarding direction for general elevators. Various experiments exhibit the effectiveness and accuracy of the proposed method.

Implementation of Autonomous Mobile Wheeled Robot for Path Correction through Deep Learning Object Recognition (딥러닝 객체인식을 통한 경로보정 자율 주행 로봇의 구현)

  • Lee, Hyeong-il;Kim, Jin-myeong;Lee, Jai-weun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.164-172
    • /
    • 2019
  • In this paper, we implement a wheeled mobile robot that accurately and autonomously finds the optimal route from the starting point to the destination point based on computer vision in a complex indoor environment. We get a number of waypoints from the starting point to get the best route to the target through deep reinforcement learning. However, in the case of autonomous driving, the majority of cases do not reach their destination accurately due to external factors such as surface curvature and foreign objects. Therefore, we propose an algorithm to deepen the waypoints and destinations included in the planned route and then correct the route through the waypoint recognition while driving to reach the planned destination. We built an autonomous wheeled mobile robot controlled by Arduino and equipped with Raspberry Pi and Pycamera and tested the planned route in the indoor environment using the proposed algorithm through real-time linkage with the server in the OSX environment.

Study on the Failure Diagnosis of Robot Joints Using Machine Learning (기계학습을 이용한 로봇 관절부 고장진단에 대한 연구)

  • Mi Jin Kim;Kyo Mun Ku;Jae Hong Shim;Hyo Young Kim;Kihyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.113-118
    • /
    • 2023
  • Maintenance of semiconductor equipment processes is crucial for the continuous growth of the semiconductor market. The process must always be upheld in optimal condition to ensure a smooth supply of numerous parts. Additionally, it is imperative to monitor the status of the robots that play a central role in the process. Just as many senses of organs judge a person's body condition, robots also have numerous sensors that play a role, and like human joints, they can detect the condition first in the joints, which are the driving parts of the robot. Therefore, a normal state test bed and an abnormal state test bed using an aging reducer were constructed by simulating the joint, which is the driving part of the robot. Various sensors such as vibration, torque, encoder, and temperature were attached to accurately diagnose the robot's failure, and the test bed was built with an integrated system to collect and control data simultaneously in real-time. After configuring the user screen and building a database based on the collected data, the characteristic values of normal and abnormal data were analyzed, and machine learning was performed using the KNN (K-Nearest Neighbors) machine learning algorithm. This approach yielded an impressive 94% accuracy in failure diagnosis, underscoring the reliability of both the test bed and the data it produced.

  • PDF

A Development of Robot and Convergence Activity Curriculum Model for Elementary School Students (초등학생을 위한 융합활동-로봇분야 교육과정 모델 개발)

  • Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.4
    • /
    • pp.481-488
    • /
    • 2015
  • Lately, the importance of robot education is rising in elementary schools, because of STAEM education. In this study, robot and convergence activity curriculum in software education was developed to robot education for elementary school. We suggested robot education framework based on the Rainbow system, which is repeatable and progressive. The framework is divided into 7 steps, 14 criteria. So, their students can be promoted to the higher level when they complete the lower level, regardless of their grade. It is necessary for robot education in elementary schools to develop the contents and programs according to suggested curriculum.

Differentially Responsible Adaptive Critic Learning ( DRACL ) for the Self-Learning Control of Multiple-Input System (多入力 시스템의 자율학습제어를 위한 차등책임 적응비평학습)

  • Kim, Hyong-Suk
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.28-37
    • /
    • 1999
  • Differentially Responsible Adaptive Critic Learning technique is proposed for learning the control technique with multiple control inputs as in robot system using reinforcement learning. The reinforcement learning is a self-learning technique which learns the control skill based on the critic information Learning is a after a long series of control actions. The Adaptive Critic Learning (ACL) is the representative reinforcement learning structure. The ACL maximizes the learning performance using the two learning modules called the action and the critic modules which exploit the external critic value obtained seldomly. Drawback of the ACL is the fact that application of the ACL is limited to the single input system. In the proposed Differentially Responsible Action Dependant Adaptive Critic learning structure, the critic function is constructed as a function of control input elements. The responsibility of the individual control action element is computed based on the partial derivative of the critic function in terms of each control action element. The proposed learning structure has been constructed with the CMAC neural networks and some simulations have been done upon the two dimensional Cart-Role system and robot squatting problem. The simulation results are included.

  • PDF

Deep Learning Based Monocular Depth Estimation: Survey

  • Lee, Chungkeun;Shim, Dongseok;Kim, H. Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • Monocular depth estimation helps the robot to understand the surrounding environments in 3D. Especially, deep-learning-based monocular depth estimation has been widely researched, because it may overcome the scale ambiguity problem, which is a main issue in classical methods. Those learning based methods can be mainly divided into three parts: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning trains the network from dense ground-truth depth information, unsupervised one trains it from images sequences and semi-supervised one trains it from stereo images and sparse ground-truth depth. We describe the basics of each method, and then explain the recent research efforts to enhance the depth estimation performance.

Object Tracking Algorithm of Swarm Robot System for using Polygon Based Q-Learning and Cascade SVM (다각형 기반의 Q-Learning과 Cascade SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyung-Chang;Sim, Kwee-Bo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Cascade Support Vector Machine algorithm for object search with multiple robots. We organized an experimental environment with ten mobile robots, twenty five obstacles, and an object, and then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and Cascade SVM to enhance the fusion model with DBAM and ABAM process.

  • PDF

Development of Human Following Method of Mobile Robot Using TRT Pose (TRT Pose를 이용한 모바일 로봇의 사람 추종 기법)

  • Choi, Jun-Hyeon;Joo, Kyeong-Jin;Yun, Sang-Seok;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • In this paper, we propose a method for estimating a walking direction by which a mobile robots follows a person using TRT (Tensor RT) pose, which is motion recognition based on deep learning. Mobile robots can measure individual movements by recognizing key points on the person's pelvis and determine the direction in which the person tries to move. Using these information and the distance between robot and human, the mobile robot can follow the person stably keeping a safe distance from people. The TRT Pose only extracts key point information to prevent privacy issues while a camera in the mobile robot records video. To validate the proposed technology, experiment is carried out successfully where human walks away or toward the mobile robot in zigzag form and the robot continuously follows human with prescribed distance.

Robot Manipulator Visual Servoing via Kalman Filter- Optimized Extreme Learning Machine and Fuzzy Logic

  • Zhou, Zhiyu;Hu, Yanjun;Ji, Jiangfei;Wang, Yaming;Zhu, Zefei;Yang, Donghe;Chen, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2529-2551
    • /
    • 2022
  • Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated environments: the perturbation noises of the robot system, error of noise statistics, and slow convergence. To solve these three problems, we use an IBVS based on KF, African vultures optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic (FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-ELM error compensation model to compensate for the sub-optimal estimation of the KF to solve the problems of disturbance noises and noise statistics error. Next, an FL controller is designed for gain adaptation. This approach addresses the problem of the slow convergence of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve the three problems mentioned above without camera parameters, robot kinematics model, and target depth information. We also compared the proposed method with other KF-based IBVS methods under different disturbance noise environments. And the proposed method achieves the best results under the three evaluation metrics.