• 제목/요약/키워드: Robot-Finger

검색결과 113건 처리시간 0.025초

장갑 센서를 이용한 보드로봇의 무선제어 연구 (Study on Wireless Control of a Board Robot Using a Sensing Glove)

  • 류재명;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.341-347
    • /
    • 2013
  • 본 논문은 장갑 센서를 이용한 보드로봇의 무선제어 연구에 관해 다룬다. 사용된 보드로봇은 일종의 탑승형 로봇으로 탑승자는 옆으로 서서 앞을 보며 제어한다. 탑승자는 제안된 무선제어기 장갑을 한 손에 끼고, 손가락 동작에 의해 방향전환을 할 수 있다. 보드로봇과 사용자와의 무선제어를 위하여 블루투스(Bluetooth)가 사용되며, 장갑 제어기에는 광센서(CdS cell Sensor)와 LED(Light Emitted Diode)를 사용하여 손가락 동작에 의해 보드로봇을 조종한다. 사용자의 손동작에 따른 다섯 종류의 명령('1'우회전 '2'중립 '3'좌회전 '4'운전 '5'정지)을 CdS 센서로 측정된 아날로그 값을 기반으로 손가락 접촉유무를 확인한 후, 접촉유무에 대한 디지털 값을 전송한다. 보드로봇에 장착된 블루투스 송신기는 이 값을 수신한 후 수신된 명령을 기반으로 보드로봇은 주행된다. 실험의 결과로 제안된 장갑센서 인터페이스가 보드로봇 제어를 위해 효과적으로 사용될 수 있음을 보여준다.

듀얼-핑거의 안정적 파지 운동 제어에 관한 연구 (A Study on Stable Grasping Motion Control of Dual-Finger)

  • 엄혁;최종환;김승수;한현용;양순용;이진걸
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.81-88
    • /
    • 2005
  • This paper attempts to derive the dynamic model of handling tasks in finger robot which grasps stable and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, the roblems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. The effect of geometric constraints of area-contacts between the link's end-effector and the object is analyzed and the model based on the differential-algebraic equations is presented. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation and the experiment that the control system gives the performance improvement in the dynamic stable grasping and nimble manipulating of the dual fingers robot with soft tips.

멕조인트를 이용한 다관절 로봇핸드 설계 (Design of a Humanoid Robot-hand with MEC-Joint)

  • 이상문;이경돈;민흥기;노태성;김성태
    • 로봇학회논문지
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2012
  • A humanoid robot hand with one thumb and two fingers has been developed. Each finger has the specially designed compact joints, called "MEC Joint", which convert the rotation of a motor to the swing motion of a pendulum. The robot hand with the MEC Joints is compact and relatively light but strong enough to grasp objects in the same manner as human being does in daily activities. In this paper the kinematic model and the torque characteristics of the MEC Joint are presented and compared with the results of the dynamic simulation and the dynamometer test. The dynamic behavior of the thumb and two fingers with MEC Joints are also presented by computer simulation.

손가락 로봇의 안정 파지 운동 제어에 관한 연구 (A Study on Control of Stable Grasping Motion for Finger Robot)

  • 최종환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.428-437
    • /
    • 2006
  • This paper attempts to derive and analyze the dynamic system of grasping a rigid object by means of two multi-degrees-of-freedom robot flngers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper. the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

조직배양체 이식로봇 시스템의 개발 (I) - 소프트 그리퍼 - (Development of a transplanting robot system for tissue culture plants (I) - a soft gripper -)

  • 이현동;김기대;김찬수
    • Journal of Biosystems Engineering
    • /
    • 제23권5호
    • /
    • pp.491-498
    • /
    • 1998
  • Transplanting process during the tissue culture of potato seedlings is costly, since the cost of highly skilled labor working in the sanitary environment takes up about 60-70% of the production cost. The objective of this study was to develop a soft gripper of a transplanting robot system for the labor-saving tissue culture. The prototype of the soft gripper was consisted of power-transmitting part finger and plant contacts. The power transmitting part transformed the rotating motion of a step motor to the reciprocating motion of the finger. Plant stems used in the test were potato seedlings cultured for six weeks. The dimensional characteristics of cultured seedlings, the compressive strengths of the stems, the extractive force from the culture medium and the gripping force of the finger were measured. A proper gripping force was found to be 0.343N at the extractive force of 0.41N when the plant contacts were made of silicon. Sixteen plants out of 70 trials were tangled with others, resulting in the success rate of 77.1%.

  • PDF

근전도 기반의 실시간 등척성 손가락 힘 예측 알고리즘 개발 (Development of a Real-Time Algorithm for Isometric Pinch Force Prediction from Electromyogram (EMG))

  • 최창목;권순철;박원일;신미혜;김정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1588-1593
    • /
    • 2008
  • This paper describes a real-time isometric pinch force prediction algorithm from surface electromyogram (sEMG) using multilayer perceptron (MLP) for human robot interactive applications. The activities of seven muscles which are observable from surface electrodes and also related to the movements of the thumb and index finger joints were recorded during pinch force experiments. For the successful implementation of the real-time prediction algorithm, an off-line analysis was performed using the recorded activities. Four muscles were selected for the force prediction by using the Fisher linear discriminant analysis among seven muscles, and the four muscle activities provided effective information for mapping sEMG to the pinch force. The MLP structure was designed to make training efficient and to avoid both under- and over-fitting problems. The pinch force prediction algorithm was tested on five volunteers and the results were evaluated using two criteria: normalized root mean squared error (NRMSE) and correlation (CORR). The training time for the subjects was only 2 min 29 sec, but the prediction results were successful with NRMSE = 0.112 ${\pm}$ 0.082 and CORR = 0.932 ${\pm}$ 0.058. These results imply that the proposed algorithm is useful to measure the produced pinch force without force sensors in real-time. The possible applications include controlling bionic finger robot systems to overcome finger paralysis or amputation.

  • PDF

실시간 손 제스처 인식을 위하여 손목 피부 표면의 높낮이 변화를 고려한 스마트 손목 밴드 (Smart Wrist Band Considering Wrist Skin Curvature Variation for Real-Time Hand Gesture Recognition)

  • 강윤;정주노
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.18-28
    • /
    • 2023
  • This study introduces a smart wrist band system with pressure measurements using wrist skin curvature variation due to finger motion. It is easy to wear and take off without pre-adaptation or surgery to use. By analyzing the depth variation of wrist skin curvature during each finger motion, we elaborated the most suitable location of each Force Sensitive Resistor (FSR) to be attached in the wristband with anatomical consideration. A 3D depth camera was used to investigate distinctive wrist locations, responsible for the anatomically de-coupled thumb, index, and middle finger, where the variations of wrist skin curvature appear independently. Then sensors within the wristband were attached correspondingly to measure the pressure change of those points and eventually the finger motion. The smart wrist band was validated for its practicality through two demonstrative applications, i.e., one for a real-time control of prosthetic robot hands and the other for natural human-computer interfacing. And hopefully other futuristic human-related applications would be benefited from the proposed smart wrist band system.