• Title/Summary/Keyword: Robot vision

Search Result 878, Processing Time 0.028 seconds

Vision Based Position Control of a Robot Manipulator Using an Elitist Genetic Algorithm (엘리트 유전 알고리즘을 이용한 비젼 기반 로봇의 위치 제어)

  • Park, Kwang-Ho;Kim, Dong-Joon;Kee, Seok-Ho;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • In this paper, we present a new approach based on an elitist genetic algorithm for the task of aligning the position of a robot gripper using CCD cameras. The vision-based control scheme for the task of aligning the gripper with the desired position is implemented by image information. The relationship between the camera space location and the robot joint coordinates is estimated using a camera-space parameter modal that generalizes known manipulator kinematics to accommodate unknown relative camera position and orientation. To find the joint angles of a robot manipulator for reaching the target position in the image space, we apply an elitist genetic algorithm instead of a nonlinear least square error method. Since GA employs parallel search, it has good performance in solving optimization problems. In order to improve convergence speed, the real coding method and geometry constraint conditions are used. Experiments are carried out to exhibit the effectiveness of vision-based control using an elitist genetic algorithm with a real coding method.

Control of a mobile robot supporting a task robot on the top

  • Lee, Jang M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.1-7
    • /
    • 1996
  • This paper addresses the control problem of a mobile robot supporting a task robot with needs to be positioned precisely. The main difficulty residing in the precise control of a mobile robot supporting a task robot is providing an accurate and stable base for the task robot. That is, the end-plate of the mobile robot which is the base of the task robot can not be positioned accurately without external position sensors. This difficulty is resolved in this paper through the vision information obtained from the camera attached at the end of a task robot. First of all, the camera parameters were measured by using the images of a fixed object captured by the camera. The measured parameters include the rotation, the position, the scale factor, and the focal length of the camera. These parameters could be measured by using the features of each vertex point for a hexagonal object and by using the pin-hole model of a camera. Using the measured pose(position and orientation) of the camera and the given kinematics of the task robot, we calculate a pose of the end-plate of the mobile robot, which is used for the precise control of the mobile robot. Experimental results for the pose estimations are shown.

  • PDF

Obstacle Avoidance and Path Planning for a Mobile Robot Using Single Vision System and Fuzzy Rule (모노비전과 퍼지규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.274-277
    • /
    • 2000
  • In this paper we propose new algorithms of path planning and obstacle avoidance for an autonomous mobile robot with vision system. Distance variation is included in path planning to approach the target point and avoid obstacles well. The fuzzy rules are also applied to both trajectory planning and obstacle avoidance to improve the autonomy of mobile robot. It is shown by computer simulation that the proposed algorithm is working well.

  • PDF

Navigation and Localization of Mobile Robot Based on Vision and Sensor Network Using Fuzzy Rules (퍼지 규칙을 이용한 비전 및 무선 센서 네트워크 기반의 이동로봇의 자율 주행 및 위치 인식)

  • Heo, Jun-Young;Kang, Geun-Tack;Lee, Won-Chang
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.673-674
    • /
    • 2008
  • This paper presents a new navigation algorithm of an autonomous mobile robot with vision and IR sensors, Zigbee Sensor Network using fuzzy rules. We also show that the developed mobile robot with the proposed algorithm is navigating very well in complex unknown environments.

  • PDF

Self-Localization of Mobile Robot Using Single Camera (단일 카메라를 이용한 이동로봇의 자기 위치 추정)

  • 김명호;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.404-404
    • /
    • 2000
  • This paper presents a single vision-based sel(-localization method in an corridor environment. We use the Hough transform for finding parallel lines and vertical lines. And we use these cross points as feature points and it is calculated relative distance from mobile robot to these points. For matching environment map to feature points, searching window is defined and self-localization is performed by matching procedure. The result shows the suitability of this method by experiment.

  • PDF

Tele-Operation of Dual Arm Robot Using 3-D vision

  • Shibagami, Genjirou;Itoh, Akihiko;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.386-390
    • /
    • 1998
  • A master-slave system is proposed as a teaching device for a dual arm robot. The slave robots are remotely controlled by two delta-type master arms. In order to help the operator to observe the target object from the desired position and desired direction, cameras are mounted on a specialized manipulator, Movements of two slave arms are coordinated with that of the cameras. Due to this coordinated movements, the operator needs not to care the geometrical relation between the cameras and the slave robots.

  • PDF

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF

Implementation of a Transformable Hexapod Robot for Complex Terrains (복잡한 지형에서 변형 가능한 6족 로봇의 구현)

  • Yoo, Young-Kuk;Kong, Jung-Shik;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.65-74
    • /
    • 2008
  • This paper deals with the path creation for stable action of a robot and transformation by using the fuzzy algorithm. Also, the obstacle detection and environmental analysis are performed by a stereo vision device. The robot decides the range and the height using the fuzzy algorithm. Therefore the robot can be adapted in topography through a transformation by itself. In this paper, the robot is designed to have two advantages. One is the fast movability in flat topography with the use of wheels. The other is the moving capability in uneven ground by walking. It has six leg forms for a stable walk. The wheels are fixed on the legs of the robot, so that various driving is possible. The height and the width of robot can be changed variously using four joints of each leg. The wheeled joint has extra DOF for a rotation of vertical axis. So the robot is able to rotate through 360 degrees. The robot has various sensors for checking the own state. The stable action of a robot is achieved by using sensors. We verified the result of research through an experiment.

Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision (스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험)

  • Lee, Woon-Kyu;Kim, Dong-Min;Choi, Ho-Jin;Kim, Jeong-Seob;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.