• 제목/요약/키워드: Robot vehicle

검색결과 378건 처리시간 0.028초

휴머노이드 로봇의 안전한 차량 주행 전략 및 원격 제어 인터페이스 개발 (Development of Tele-operation Interface and Stable Navigation Strategy for Humanoid Robot Driving)

  • 신세호;김민성;안준우;김상현;박재흥
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.904-911
    • /
    • 2016
  • This paper presents a novel driving system by the humanoid robot to drive a vehicle in disaster response situations. To enhance robot's capability for substituting human activities in responding to natural and man-made disaster, the one of prerequisite skills for the rescue robot is the mounted mobility to maneuver a vehicle safely in disaster site. Therefore, our driving system for the humanoid is developed in order to steer a vehicle through unknown obstacles even under poor communication conditions such as time-delay and black-out. Especially, the proposed system includes a tele-manipulation interface and stable navigation strategies. First, we propose a new type of path estimation method to overcome limited communication. Second, we establish navigation strategies when the operator cannot recognize obstacles based on Dynamic Window Approach. The effectiveness of the proposed developments is verified through simulation and experiments, which demonstrate suitable system for driving a vehicle in disaster response.

공중-지상 로봇 협동 기술과 그 응용 및 연구 방향 (Air-Ground Cooperating Robots: Applications and Challenges)

  • 유승은;김대은
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.101-106
    • /
    • 2010
  • Researches on air-ground robot cooperating system has been made recently. The cooperation among homogeneous robots focused on the architecture of the system, quality and influence of the communication. In contrast, the cooperation among heterogeneous robots such as aerial vehicle and ground vehicle robots has not been much handled. There are a couple of main points for those air-ground cooperating robots. One is using UAV (Unmanned Aerial Vehicle) as an extra sensor of UGV (Unmanned Ground Vehicle). This kind of application is usually used in situations such as guiding UGV to an appropriate path which could be better determined from the eye in the sky as UAV. The other main application of air-ground cooperating robot system is the localization. By combining sensor information from both UAV and UGV, the robot system as a whole can localize a target object or find features in the environment with better performance than UGV or UAV alone. Although these applications are recently studied in many different ways and devices, there are still a lot of possibilities in the field of air-ground cooperating robot systems. We introduce those research fields in this paper.

영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 설계지침 (Guideline for the Design of Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels)

  • 이화조;김은찬;한승철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.548-553
    • /
    • 2002
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

  • PDF

시각장애인을 위한 보행안내로봇 개발 (Development of Walking Guide Robot for the Blind)

  • 유기호;윤명종;권대규;김남균;강정호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.888-891
    • /
    • 2005
  • In this paper, the prototype of a walking guide robot with tactile display is introduced, and the psychophysical experiment of the tactile recognition for a tactile display is carried out and analyzed. The objective of this research is the development of a walking guide robot for the blind to walk safely. A walking guide robot consists of a guide vehicle and a tactile display device. A guide vehicle, located in the front of the walking blind, detects the obstacle using ultrasonic sensors and offers the information of position and walking direction acquired from GPS module to the walking blind by voice. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The psychophysical experiments for the threshold of perception and recognition ability of tactile stimulation are carried out by the estimation of the subject group. As a result the appropriate tactile stimulus intensity and frequency to recognize tactile stimulation effectively are discussed and derived.

  • PDF

전동휠체어 로봇의 경로추적제어에 관한 연구 (A Study on the Path-Tracking of Electric Wheelchair Robot)

  • 안경관;윤종일;레듀이코아
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1265-1271
    • /
    • 2011
  • These days the number of aged and disabled people is increasing rapidly. But most of the disabled or the aged who have the ability to work, want to engage in economic activities and solve social restrictions as well as their bad financial conditions. This paper concerns about the tracking control of an electric wheelchair robot for welfare vehicle where the seat and electric wheelchair are separated and electric wheelchair robot must be autonomously controlled without the help of assistant. So the aged or the disabled people can drive welfare vehicle by himself by adopting this system. Therefore the concept of both an autonomous driving of electric wheelchair and path tracking robots is required in this system. Finally we suggested fuzzy controller in order to control the path tracking of electric wheelchair robot and compared the capability of the proposed controller with conventional PID controller.

관로 검사로봇 자세의 퍼지 PID제어 (A Fuzzy PID Control of Robot for Pipes Inspection)

  • 김도욱;양해원;윤지섭
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.473-480
    • /
    • 2000
  • A fuzzy PID controller is proposed for the posture control of a two DOF robot vehicle inspecting the defects of the inner wall of sewage pipes. The main difficulty in controlling these kinds of vehicles lies in that the center of two mobile shafts does not coincide with the weight center of the vehicle due to its long and wide shape. In this case the previous controller, based on the assumption that the gap between these centers are small, can not guarantee satisfactory transient response characteristics. In this paper, this gap is included in the mathematical modelling of the robot kinematics, and in order to compensate the unsatisfactory transient response characteristics, the fuzzy PID controller is proposed. This controller tunes the PID control gains with respect to the current state of the errors between the reference and the current postures. A series of simulations has been performed to investigate the tracking performance of the proposed controller for the lane changing path and the robustness to the external disturbance. The simulation results show that the proposed controller has a satisfactory tracking performance in the transient state as compared with that of the backstepping control given in reference.

  • PDF

AUTONOMOUS TRACTOR-LIKE ROBOT TRAVELING ALONG THE CONTOUR LINE ON THE SLOPE TERRAIN

  • Torisu, R.;Takeda, J.;Shen, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.690-697
    • /
    • 2000
  • The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.

  • PDF

이동로봇에서의 효율적인 자세제어 방법 (The efficient motion control method for autonomous mobile robot)

  • 강민구;이진수;김상우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.387-392
    • /
    • 1992
  • This paper presents a local trajectory generation method which is based on a sequence of reference posture-velocities and the efficient low level control algorithm which constructs the complete smooth curve from the trajectory specification. The reference trajectory generator(RTG) which is in between the local path planner(LPP) and the robot motion controller(RMC) generates a sequence of set-points for each path segments from the LPP and pass it to the RMC. The RMC controls the motions of vehicle which should follow the sequence. In the feedback controller of VMC, the method which compensates robot posture-velocity error correctly is used. These methods are implemented on indoor autonomous vehicle, 'ALIVE' mobile robot. The ALIVE mobile robot system is implemented on the 32bit VME bus system: the two VME CPU's are used for RTG and RMC, while the 80C196KC-based VME board is used for motor controller.

  • PDF

수중유영로봇 Crabster의 최적 유영 구현 (Optimal Swimming Motion for Underwater Robot, Crabster)

  • 김대현;이지홍
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.284-291
    • /
    • 2012
  • Recently, development of underwater robot has actively been in progress in the world as ROV(Remotely Operator Vehicle) and AUV(Autonomous Unmmanded Vehicle) style. But KIOST(Korea Institute of Ocean Science and Technology), beginning in 2010, launched the R&D project to develop the robot, dubbed CRABSTER(Crab + (Lob)ster) in a bid to enhance the safety and efficiency of resource exploration. CRABSTER has been designed to be able to walk and swim with its own legs without screws. Among many research subjects regarding CRABSTER, optimal swimming patterns are handled in this paper. In previous studies, drag forces during one period with different values for angle of each joint were derived. However kinematics of real-robot and fluid-dynamics are not considered. We conducted simulations with an optimization algorithm for swimming by considering simplified fluid dynamics in this paper. Drag-coefficients applied to the simulation were approximated values calculated by CFD(Computational Fluid Dynamics : Tecplot 360, ANSYS). In addition, optimized swimming patterns were applied to a real robot. The experiments with the real robot were conducted in circumstances in the water. As a result, when the experiments were carried out in the water, a regular pattern of drag force output came out depending on the movement of the robot. We confirmed the fact that the drag forces from the simulation and the experiment has a high similarity.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF