• 제목/요약/키워드: Robot skin

검색결과 60건 처리시간 0.029초

협동 로봇 스킨에 적용하기 위한 재료의 성별 선호도와 관련된 자료 조사 (Evaluation of Materials Related to Gender-Preferences for the Application of Cooperative Robot Skin)

  • 손민희;신동원;이선영
    • 적정기술학회지
    • /
    • 제7권1호
    • /
    • pp.2-25
    • /
    • 2021
  • 본 연구에서는 일반적으로 협동 로봇의 스킨으로 사용될 수 있는 고분자 재료 선정 및 기계적 특성 검사를 진행하고, 각 재료에 대한 성별 선호도 설문조사를 진행하였다. 조사는 20~30세의 근무자 225명(남: 124명, 여: 101명)을 대상으로 작업 중 로봇과 가장 많이 접촉하는 어깨, 팔꿈치 별로 선정된 Dragon-skin, Ecoflex, 및 polydimethylsiloxane(PDMS)에 대한 성별에 따른 선호도 조사로 진행하였다. 설문은 각각 설문자들이 느끼는 재료에 대한 인식 단단함, 끈적임, 익숙함, 선호도 4종류로 구분하여 진행되었고, 단단함과 끈적임은 각각 재료의 변형률과 접촉각으로 측정되었다. 선호도 조사 결과, 여성은 변형률이 작은, 더 단단한 재료를 선호하는 반면, 남성은 변형률이 큰 부드러운 재료를 선호했다. 성별에 따른 선호도와 관련하여 재료의 특성을 평가한 결과, 여성은 끈적임이 낮고 변형률이 낮은 Dragon-skin을 선호하는 경향이 있는 반면, 남성은 끈적임에 관계없이 변형률이 높은 Ecoflex를 선호하는 경향이 있음을 확인하였다. 따라서 이러한 결과는 협동 로봇 스킨 제작을 고려할 때 재료 선택에 기준이 될 것으로 보인다.

보행보조 재활 로봇 착용에 따른 쾌적성 평가 (Comfort Evaluation by Wearing a Gait-Assistive Rehabilitation Robot)

  • 엄란이;이예진
    • 한국의류학회지
    • /
    • 제44권6호
    • /
    • pp.1107-1119
    • /
    • 2020
  • This study analyzed a subject's body reaction and subjective sensation when wearing a gait-assistive rehabilitation robot. The research method measured skin and clothing surface temperatures for 'seating-standing' and 'walking in place' exercises after wearing a gait-assistive rehabilitation robot. In addition, subjective sensation and satisfaction were evaluated on a 7-point Likert scale. The study results showed that the average skin temperature during exercise while wearing the gait-assistive rehabilitation robot was within a comfortable range. However, during the 'seating-standing' exercise, the skin temperature was slightly lowered. Additionally, the clothing surface temperature tended to be lower than the pre-exercise temperature after all exercises. The subjective sensation evaluation results showed that the wear comfort of the waist part was low during mobility/activity. In addition, an overall improvement in the wear comfort of the robot is necessary. The short-time movement of wearing and walking in the gait-assistive rehabilitation robot did not interfere with the thermal comfort of the body. However, the robot needs to be ergonomically improved in consideration of the long wearing time along with improved material that to satisfy overall wearing comfort.

Development of Robot Fish, ROFI 1.1

  • Kwack, Sang-Hyun;Kim, Yong-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2007
  • This study introduces the development of robot fish ROFI 1.1. Today, robot fish is one of strong candidates for next-generation UUV. The present paper describes the design, manufacturing, and operation tests of the robot fish developed at Seoul National University. The very first robot fish in Korea, ROFI 1.1 is operated by a wireless remote controller. Its overall length is 680mm, and weight is 8.8kg. The fore body contains main mechanical and electrical systems and is covered by a FRP skin. The aft body has a mechanical bone system that mimics fish bones, and its skin is made of flexible silicon sponge to allow elastic motion for propulsion. It is found that this mechanical system creates effective and realistic fish-like swimming mode. It is observed that the normal and maximum advancing speeds of ROFI 1.1 are about 1 and 2 m/sec, and the turning radius is between $0.7{\sim}2.5m$, depending on the turning mechanism.

ITO 터치 패널 이용한 교시 제어 연구 (Development of Direct Teaching Control using ITO Touch Panel)

  • 윤재석;남상엽;김기은;김동한
    • 전자공학회논문지
    • /
    • 제52권3호
    • /
    • pp.206-212
    • /
    • 2015
  • 본 논문에서는 ITO 터치 패널 센서를 로봇의 피부로 이용하여 로봇 팔을 제어하는 물리적 인간-로봇 상호작용 방법을 제안한다. 사람과 로봇간의 물리적 상호작용을 구현하기 위해서는 힘/토크 센서를 사용하는 방법과 작은 소자 타입의 센서를 배치하여 만든 촉각 센서를 사용하는 방법이 연구되고 있다. 하지만, 이러한 센서들은 가격적인 측면이나 성능적인 측면에서 장단점이 존재하며, 본 연구에서는 터치 패널을 로봇의 피부로 사용하여 물리적 상호작용을 하는 방법을 제안하고 전체적인 시스템을 구축하여 실험을 통해 힘/토크 센서의 정확성과 소자 타입 센서의 경제성을 보이고자 한다. 실험은 터치 패널에서 기준점을 잡아 제스처를 생성하여 로봇 팔을 제어하는 방법과 엔드이펙터에 장착하여 로봇 팔을 제어하는 방법에 대해 진행하였다. 이러한 실험을 통해 터치 패널을 이용한 교시 제어의 가능성도 확인하였다.

비특이적 통증 환자에서 마사지 로봇이 체표면 온도, 통증, 근긴장도, 관절가동범위에 미치는 효과 (Effects of Massage Robot on Skin Temperature, Pain, Muscle Tone, and ROM in Patients with Non-specific Pain)

  • 배소정;권기현;태기식;이현주
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권6호
    • /
    • pp.476-481
    • /
    • 2023
  • The purpose of this study was to investigate the effects on skin temperature, pain, muscle tone, and ROM after applying the massage robot "PIRO-ZERO" to 6 men and 4 women in their 20s who complained of non-specific pain in the shoulder or back for more than 12 weeks. As a result of the study, there was a significant increase in skin temperature not only in the area where the massage was applied, but also on the opposite side and throughout the body due to increased blood flow. Pain in the upper trapezius, rhomboid, and erector spinae muscle was decreased, and muscle tone in the erector spinae muscles was significantly decreased. There was a significant increase in ROM of neck and trunk flexion, which is thought to be because the massage reduced muscle tone around the spine, increasing flexibility. In the future, as the safety and effectiveness of massage robots are further verified and the pressure, speed, and path become more diverse, satisfaction is expected to increase.

다중센서를 이용한 로봇 손의 파지 제어

  • 이양희;서동수;박민용;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.694-697
    • /
    • 1996
  • The aim of this work for 5 years from 1994 is to develop a multi-fingered robot hand and its control system for grasp and manipulation of objects dexterously. Since the robot hand is still being developed, a commercialized robot hand from Barrett Company is utilized to implement a hand controller and control algorithm. For this, VME based motion control and interface boards are developed and multi-sensors such as encoder, force/torque sensor, dynamic sensor and artificial skin sensor are partly developed and employed for the grasping control algorithm. In oder to handle uncertainties such as mechanical idleness and backlash, a fuzzy rule based grasping algorithm is also considered and tested with the developed control system.

  • PDF

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

Color-based Face Detection for Alife Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.2-49
    • /
    • 2001
  • In this paper, a skin-color model in the HSV space was developed. Based on it, face region can be separated from other parts in a image. Face can be detected by the methods of Template and eye-pair. This realized in our robot.

  • PDF

실시간 손 제스처 인식을 위하여 손목 피부 표면의 높낮이 변화를 고려한 스마트 손목 밴드 (Smart Wrist Band Considering Wrist Skin Curvature Variation for Real-Time Hand Gesture Recognition)

  • 강윤;정주노
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.18-28
    • /
    • 2023
  • This study introduces a smart wrist band system with pressure measurements using wrist skin curvature variation due to finger motion. It is easy to wear and take off without pre-adaptation or surgery to use. By analyzing the depth variation of wrist skin curvature during each finger motion, we elaborated the most suitable location of each Force Sensitive Resistor (FSR) to be attached in the wristband with anatomical consideration. A 3D depth camera was used to investigate distinctive wrist locations, responsible for the anatomically de-coupled thumb, index, and middle finger, where the variations of wrist skin curvature appear independently. Then sensors within the wristband were attached correspondingly to measure the pressure change of those points and eventually the finger motion. The smart wrist band was validated for its practicality through two demonstrative applications, i.e., one for a real-time control of prosthetic robot hands and the other for natural human-computer interfacing. And hopefully other futuristic human-related applications would be benefited from the proposed smart wrist band system.

인공근육을 이용한 얼굴로봇 (A Face Robot Actuated with Artiflcial Muscle)

  • 곽종원;지호준;정광목;남재도;전재욱;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.991-999
    • /
    • 2004
  • Face robots capable of expressing their emotional status, can be adopted as an efficient tool for friendly communication between the human and the machine. In this paper, we present a face robot actuated with artificial muscle based on dielectric elastomer. By exploiting the properties of polymers, it is possible to actuate the covering skin, eyes as well as provide human-like expressivity without employing complicated mechanisms. The robot is driven by seven types of actuator modules such as eye, eyebrow, eyelid, brow, cheek, jaw and neck module corresponding to movements of facial muscles. Although they are only part of the whole set of facial motions, our approach is sufficient to generate six fundamental facial expressions such as surprise, fear, anger, disgust, sadness, and happiness. Each module communicates with the others via CAN communication protocol fur the desired emotional expressions, the facial motions are generated by combining the motions of each actuator module. A prototype of the robot has been developed and several experiments have been conducted to validate its feasibility.