• Title/Summary/Keyword: Robot manipulator

Search Result 1,054, Processing Time 0.055 seconds

Development of a Visual Servo System in a Mobile Manipulator for Operating Numeral Buttons (이동형 머니퓰레이터의 숫자버튼 조작을 위한 시각제어 시스템 개발)

  • 박민규;이민철;주원동
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.92-100
    • /
    • 2004
  • A service robot is expected to be useful in indoor environment such as a hotel, a hospital and so on. However, many service robots are driven by wheels so that they cannot climb stairs to move to other floors. If the robot cannot use elevators. In this paper, the mobile manipulator system was developed, which can operate numeral buttons on the operating panel in the elevator. To perform this task, the robot is composed of an image recognition module, an ultrasonic sensor module and a manipulator. The robot can recognize numeral buttons and an end-effector in manipulator by the vision system. The Learning vector quantization (LVQ) algorithm is used to recognize the number on the button. The barcode mark on the end-effector is used to recognize the end-effector. The manipulator can push numeral buttons using informations captured by the vision system. The proposed method is evaluated by experiments.

Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control (로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발)

  • Koo, Tae-Hoon;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

Development of a New Buffing Robot Manipulator for Shoes (새로운 신발 버핑로봇 매니퓰레이터 개발)

  • Hwang Gyu-Deuk;Cho Sung-Duk;Choi Hyeung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.76-83
    • /
    • 2006
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot manipulator is composed of five degrees of freedom. An analysis on the forward and inverse kinematics was performed. Through the analysis, an analytic solution was derived for the joint angles corresponding to the position and orientation of the tool in the Cartesian coordinates. The hardware system of the robot composed of the control system, input/output interface system, and related electronic system was developed. The communication system was also developed to interact the robot with the related surrounding systems. A graphic user interface(GUI) program including the forward/inverse kinematics, control algorithm, and communication program was developed using visual C++ language.

Computer simulation system of robot manipulator motion (로보트 매니퓰레이터 운동의 컴퓨터 시뮬레이션 시스템)

  • 김창부;윤장로
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.539-544
    • /
    • 1991
  • In order to verify robot motions for a desired work, it is necessary to visualize it on a computer screen. This paper presents a simulation algorithm for robot manipulator motion. Kinematic description is based on the Denavit- Hartenberg link representation. In order to be applied to various types of the robot manipulator, inverse kinematics make use of the Newton-Raphson iterative method with the least squares method. Joint variables are interpolated by the lowest polynomial segment satisfying acceleration continuity. The robot motions are generated and then animated on a computer screen in the form of skeleton type.

  • PDF

Tip Position Control of a Robot Manipulator using Visual Markers (영상표식 기반의 로봇 매니퓰레이터 끝점 위치 제어)

  • Lim, Sei-Jun;Lim, Hyun;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.883-890
    • /
    • 2010
  • This paper proposes tip position control system which uses a visual marker to determine the tip position of a robot manipulator. The main idea of this paper is to introduce visual marker for the tracking control of a robot manipulator. Existing researches utilize stationary markers to get pattern information from them. Unlike existing researches, we introduce visual markers to get the coordinates of them in addition to their pattern information. Markers need not be stationary and the extracted coordinate of markers are used as a reference trajectory for the tracking control of a robot manipulator. To build the proposed control scheme, we first obtain intrinsic parameters through camera calibration and evaluate their validity. Secondly, we present a procedure to obtain the relative coordinate of a visual marker with respect to a camera. Thirdly, we derive the equation for the kinematics of the SCORBOTER 4pc manipulator which we use for control of manipulator. Also, we provide a flow diagram of entire visual marker tracking system. The feasibility of the proposed scheme will be demonstrated through real experiments.

A Study on Trajectory Control of Robot Manipulator using Neural Network and Evolutionary Algorithm (신경망과 진화 알고리즘을 이용한 로봇 매니퓰레이터의 궤적 제어에 관한 연구)

  • Kim, Hae-Jin;Lim, Jung-Eun;Lee, Young-Seok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1960-1961
    • /
    • 2006
  • In this paper, The trajectory control of robot manipulator is proposed. It divides by trajectory planning and tracking control. A trajectory planning and tracking control of robot manipulator is used to the neural network and evolutionary algorithm. The trajectory planning provides not only the optimal trajectory for a given cost function through evolutionary algorithm but also the configurations of the robot manipulator along the trajectory by considering the robot dynamics. The computed torque method (C.T.M) using the model of the robot manipulators is an effective means for trajectory tracking control. However, the tracking performance of this method is severely affected by the uncertainties of robot manipulators. The Radial Basis Function Networks(RBFN) is used not to learn the inverse dynamic model but to compensate the uncertainties of robot manipulator. The computer simulations show the effectiveness of the proposed method.

  • PDF

Implementation of ROS-Based Intelligent Unmanned Delivery Robot System (ROS 기반 지능형 무인 배송 로봇 시스템의 구현)

  • Seong-Jin Kong;Won-Chang Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.610-616
    • /
    • 2023
  • In this paper, we implement an unmanned delivery robot system with Robot Operating System(ROS)-based mobile manipulator, and introduce the technologies employed for the system implementation. The robot consists of a mobile robot capable of autonomous navigation inside the building using an elevator and a Selective Compliance Assembly Robot Arm(SCARA)-Type manipulator equipped with a vacuum pump. The robot can determines the position and orientation for picking up a package through image segmentation and corner detection using the camera on the manipulator. The proposed system has a user interface implemented to check the delivery status and determine the real-time location of the robot through a web server linked to the application and ROS, and recognizes the shipment and address at the delivery station through You Only Look Once(YOLO) and Optical Character Recognition(OCR). The effectiveness of the system is validated through delivery experiments conducted within a 4-story building.

A Study on Optimal Configuration for Mobile Manipulator Using Divide-and-Conquer Control (분할-획득 제어를 이용한 이동매니퓰레이터의 최적 자세에 관한 연구)

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1395-1401
    • /
    • 2005
  • Mobile manipulator is a robot that has mobility and manipulability with the combination of the task robot and mobile robot. One of the most important feature of the Mobile Manipulator is redundant freedom. Using the redundant freedom, Mobile Manipulator can move various mode, perform dexterous motion. It can have the wider workspace and better performance in avoidance of singularity and obstacle than the fixed base structured robot. Cooperation control using the Mobile Manipulator improves the performance of the robot with redundant freedom in workspace. In this paper, configuration control of the Mobile Manipulator has been studied using Task Segment and TOMM(Task-Oriented Manipulability Measure). For verifying the proposed algorithm, we implemented a mobile manipulator, PURL-II, which is composed of a mobile robot with 3DOF and a task robot with SDOF.

Continuous Task Performance for Mobile Manipulator Using Task-Oriented Manipulability Measure (Task-Oriented Manipulabi1ity Measure를 이용한 이동매니플레이터의 연속작업 수행)

  • 진기홍;강진구;주진화;허화라;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.401-401
    • /
    • 2000
  • A mobile manipulator-a serial connection of a mobile robot and a task robot is redundant by itself. Using its redundant freedom, a mobile manipulator can move in various modes, and perform dexterous tasks. An interesting question,

  • PDF

A Method for Measuring Nonlinear Characteristics of a Robot Manipulator Having Two-degree-of-freedom

  • Harada, H.;Toyozawa, Y.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.221-224
    • /
    • 2005
  • The authors have recently developed a method for identification of Volterra kernels of nonlinear systems by using M-sequence and correlation technique. In this paper, we apply the proposed method to identification of a robot manipulator which has two degrees of freedom. From the results of the experiment, the nonlinear characteristics of the robot manipulator can be identified by the proposed method.

  • PDF