• Title/Summary/Keyword: Robot localization

Search Result 591, Processing Time 0.033 seconds

Localization using Ego Motion based on Fisheye Warping Image (어안 워핑 이미지 기반의 Ego motion을 이용한 위치 인식 알고리즘)

  • Choi, Yun Won;Choi, Kyung Sik;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.70-77
    • /
    • 2014
  • This paper proposes a novel localization algorithm based on ego-motion which used Lucas-Kanade Optical Flow and warping image obtained through fish-eye lenses mounted on the robots. The omnidirectional image sensor is a desirable sensor for real-time view-based recognition of a robot because the all information around the robot can be obtained simultaneously. The preprocessing (distortion correction, image merge, etc.) of the omnidirectional image which obtained by camera using reflect in mirror or by connection of multiple camera images is essential because it is difficult to obtain information from the original image. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we extract motion vectors using Lucas-Kanade Optical Flow in preprocessed image. Third, we estimate the robot position and angle using ego-motion method which used direction of vector and vanishing point obtained by RANSAC. We confirmed the reliability of localization algorithm using ego-motion based on fisheye warping image through comparison between results (position and angle) of the experiment obtained using the proposed algorithm and results of the experiment measured from Global Vision Localization System.

Localization of a mobile robot using the appearance-based approach (외향 기반 환경 인식을 사용한 이동 로봇의 위치인식 알고리즘)

  • 이희성;김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.47-53
    • /
    • 2004
  • This paper proposes an algerian for determining robot location using appearance-based paradigm. First, this algorithm compresses the image set using Principal Component Analysis(PCA) to obtain a low-dimensional subspace, called the eigenspace, and it makes a manifold that represent a continuous-appearance function. Neural network is employed to estimate the location of the mobile robot from the coefficients of the eigenspace. Then, Kalman filtering scheme is used for the fine estimation of the robot location. The algorithm has been implemented and tested on a mobile robot system. It is shown that the robot location is estimated accurately in several trials.

Development of Sensor Device and Probability-based Algorithm for Braille-block Tracking (확률론에 기반한 점자블록 추종 알고리즘 및 센서장치의 개발)

  • Roh, Chi-Won;Lee, Sung-Ha;Kang, Sung-Chul;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2007
  • Under the situation of a fire, it is difficult for a rescue robot to use sensors such as vision sensor, ultrasonic sensor or laser distance sensor because of diffusion, refraction or block of light and sound by dense smoke. But, braille blocks that are installed for the visaully impaired at public places such as subway stations can be used as a map for autonomous mobile robot's localization and navigation. In this paper, we developed a laser sensor stan device which can detect braille blcoks in spite of dense smoke and integrated the device to the robot developed to carry out rescue mission in various hazardous disaster areas at KIST. We implemented MCL algorithm for robot's attitude estimation according to the scanned data and transformed a braille block map to a topological map and designed a nonlinear path tracking controller for autonomous navigation. From various simulations and experiments, we could verify that the developed laser sensor device and the proposed localization method are effective to autonomous tracking of braille blocks and the autonomous navigation robot system can be used for rescue under fire.

Indoor Localization by Matching of the Types of Vertices (모서리 유형의 정합을 이용한 실내 환경에서의 자기위치검출)

  • Ahn, Hyun-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.65-72
    • /
    • 2009
  • This paper presents a vision based localization method for indoor mobile robots using the types of vertices from a monocular image. In the images captured from a camera of a robot, the types of vertices are determined by searching vertical edges and their branch edges with a geometric constraints. For obtaining correspondence between the comers of a 2-D map and the vertex of images, the type of vertices and geometrical constraints induced from a geometric analysis. The vertices are matched with the comers by a heuristic method using the type and position of the vertices and the comers. With the matched pairs, nonlinear equations derived from the perspective and rigid transformations are produced. The pose of the robot is computed by solving the equations using a least-squares optimization technique. Experimental results show that the proposed localization method is effective and applicable to the localization of indoor environments.

Improvement of Localization Accuracy with COAG Features and Candidate Selection based on Shape of Sensor Data (COAG 특징과 센서 데이터 형상 기반의 후보지 선정을 이용한 위치추정 정확도 향상)

  • Kim, Dong-Il;Song, Jae-Bok;Choi, Ji-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2014
  • Localization is one of the essential tasks necessary to achieve autonomous navigation of a mobile robot. One such localization technique, Monte Carlo Localization (MCL) is often applied to a digital surface model. However, there are differences between range data from laser rangefinders and the data predicted using a map. In this study, commonly observed from air and ground (COAG) features and candidate selection based on the shape of sensor data are incorporated to improve localization accuracy. COAG features are used to classify points consistent with both the range sensor data and the predicted data, and the sample candidates are classified according to their shape constructed from sensor data. Comparisons of local tracking and global localization accuracy show the improved accuracy of the proposed method over conventional methods.

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.

Experimental Research of Map Building and Localization at Human Co-existing Real Environments

  • Lee, Dong-Heui;Chung, Woo-Jin;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1184-1189
    • /
    • 2003
  • Map building and position estimation capabilities are practically indispensable for a mobile robot to execute its given tasks in its working environments. An autonomous map building method and a smart localization method is proposed in our previous works. The experimental verifications are carried out in this paper. We applied the proposed algorithms to mobile service robots in large-scale indoor buildings. Experimental results show that our strategy is reliable and feasible in tough conditions like non-polygonal and dynamic environments. The advantages of the algorithms are well-illustrated through real experiments.

  • PDF

Advanced Sound Source Localization Study Using De-noising Filter based on the Discrete Wavelet Transform(DWT) (이산 웨이블릿 변환 기반 디-노이징 필터를 이용한 향상된 음원 위치 추정 연구)

  • Hwang, Bo-Yeon;Jung, Jae-Hoon;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1185-1192
    • /
    • 2015
  • In this paper, a study of advanced sound source localization is conducted by eliminating the noise of the sound source using the discrete wavelet transform. And experiments are conducted to evaluate the performance of the proposed system that the mobile robot follows sound source stably. In addition, we compare the position estimation performance by applying a discrete wavelet transform to improve the reliability of the sound signal. The experimental results reveal that the de-nosing filter which removes the noise component in sound source can make the performance of position estimation more precisely and help the mobile robot distinguish the objective sound source clearly.

Cloud Based Simultaneous Localization and Mapping with Turtlebot3 (Turtlebot3을 사용한 클라우드 기반 동시 로컬라이제이션 및 매핑)

  • Ahmed, Hamdi A.;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.241-243
    • /
    • 2018
  • In this paper, in Simultaneous localization and mapping (SLAM), the robot acquire its map of environment while simultaneously localizing itself relative to the map. Cloud based SLAM, allows us to optimizing resource and data sharing like map of the environment, which allows us, as one of shared available online map. Doing so, unless we add or remove significant change in our environment, the essence of rebuilding new environmental map are omitted to new mobile robot added to the environment. As result, the requirement of additional sensor are curtailed.

  • PDF

Indoor Single Camera SLAM using Fiducial Markers (한 대의 카메라와 Fiducial 마커를 이용한 SLAM)

  • Lim, Hyon;Yang, Ji-Hyuck;Lee, Young-Sam;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.353-364
    • /
    • 2009
  • In this paper, a SLAM (Simultaneous Localization and Mapping) method using a single camera and planar fiducial markers is proposed. Fiducial markers are planar patterns that are mounted on the ceiling or wall. Each fiducial marker has a unique hi-tonal identification pattern with square outlines. It can be printed on paper to reduce cost or it can be painted using retro-reflective paint in order to make invisible and prevent undesirable visual effects. Existing localization methods using artificial landmarks have the disadvantage that landmark locations must be known a priori. In contrast, the proposed method can build a map and estimate robot location even if landmark locations are not known a priori. Hence, it reduces installation time and setup cost. The proposed method works good even when only one fiducial marker is seen at a scene. We perform computer simulation to evaluate proposed method.