• Title/Summary/Keyword: Robot industry

Search Result 503, Processing Time 0.028 seconds

A Study on Orientation and Position Control of Mobile Robot Based on Multi-Sensors Fusion for Implimentation of Smart FA (스마트팩토리 실현을 위한 다중센서기반 모바일로봇의 위치 및 자세제어에 관한 연구)

  • Dong, G.H;Kim, D.B.;Kim, H.J;Kim, S.H;Baek, Y.T;Han, S.H
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.209-218
    • /
    • 2019
  • This study proposes a new approach to Control the Orientation and position based on obstacle avoidance technology by multi sensors fusion and autonomous travelling control of mobile robot system for implimentation of Smart FA. The important focus is to control mobile robot based on by the multiple sensor module for autonomous travelling and obstacle avoidance of proposed mobile robot system, and the multiple sensor module is consit with sonar sensors, psd sensors, color recognition sensors, and position recognition sensors. Especially, it is proposed two points for the real time implementation of autonomous travelling control of mobile robot in limited manufacturing environments. One is on the development of the travelling trajectory control algorithm which obtain accurate and fast in considering any constraints. such as uncertain nonlinear dynamic effects. The other is on the real time implementation of obstacle avoidance and autonomous travelling control of mobile robot based on multiple sensors. The reliability of this study has been illustrated by the computer simulation and experiments for autonomous travelling control and obstacle avoidance.

Development of User-Based Robot Simulation using VRML and Open Architecture (VRML 과 개방형구조를 이용한 사용자 기반의 로봇 시뮬레이션 개발)

  • Kim, Chang-Sei;Hong, Keum-Shik;Kim, Soo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1201-1206
    • /
    • 2007
  • Robot simulation technique is essential not only for robot developers to design robotic systems but also for robot operators to predict robot motion, configure system layout, and increase robot ability. However, commercial robot simulation software such as ROBCAD, IGRIP, and so on are expensive and sometimes they are difficult to customize into industrial purpose programming for users. Therefore, user-based simulation programming is required to magnify the efficiency of robot system. In this paper, we show the methodology of developing user-based robot simulation programming using PC(personal computer), Open-Inventor, and Windows Programming. The developed programming has been successfully applied to welding robot systems of a shipbuilding industry. Also, the methodology presented here can be easily extended to simulate manipulators of other typed mechanism on user's PC.

  • PDF

Challenge and Problem of Medical Robot Surgery Research (국내의료로봇의 도전과 과제)

  • Kim, Kwang-Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.271-278
    • /
    • 2009
  • Recently, robot research and development was interesting the inside and outside of the country. Medical robot surgery showed diverse advantages according to advanced technical robot research. Also the academic society, research institute and industry showed concerning to the medical robot system. There is a growing need to introduce medical research for aging society. The surgical landscape is quickly changing because of the major driving force of robotics. Robot system and biomedical engineering research as defined a new engine of development show present ways of future revitalization of medical robot system. Medical robot system will be even more utilized when we keeps trying to combine high biomedical technique, IT research, and robot technique. In this review article, we begin with a short historical review of medical robotics, followed by an overview of clinical applications where robots have been applied.

Analysis of Customer Evaluations on the Ethical Response to Service Failures of Foodtech Serving Robots (푸드테크 서빙로봇의 서비스 실패에 대한 직업윤리적 대응에 대한 고객 평가 분석)

  • Han, Jeonghye;Choi, Younglim;Jeong, Sanghyun;Kim, Jong-Wook
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • As the service robot market grows among the food technology industry, the quality of robot service that affects consumer behavioral intentions in the restaurant industry has become important. Serving robots, which are common in restaurants, reduce employee work through order and delivery, but because they do not respond to service failures, they increase customer dissatisfaction as well as increase employee work. In order to improve the quality of service beyond the simple function of receiving and serving orders, functions of recovery effort, fairness, empathy, responsiveness, and certainty of the process after service failure, such as serving employees, are also required. Accordingly, we assumed the type of failure of restaurant serving service as two internal and external factors, and developed a serving robot with a vocational ethics module to respond with a professional ethical attitude when the restaurant serving service fails. At this time, the expression and action of the serving robot were developed by adding a failure mode reflecting failure recovery efforts and empathy to the normal service mode. And by recruiting college students, we tested whether the service robot's response to two types of service failures had a significant effect on evaluating the robot. Participants responded that they were more uncomfortable with service failures caused by other customers' mistakes than robot mistakes, and that the serving robot's professional ethical empathy and response were appropriate. In addition, unlike the robot's favorability, the evaluation of the safety of the robot had a significant difference depending on whether or not a professional ethical empathy module was installed. A professional ethical empathy response module for natural service failure recovery using generative artificial intelligence should be developed and mounted, and the domestic serving robot industry and market are expected to grow more rapidly if the Korean serving robot certification system is introduced.

Development of a Robot Element Design Program (로봇 요소품 설계 프로그램 개발)

  • Jung Il Ho;Kim Chang Su;Seo Jong Hwi;Park Tae Won;Kim Hee Jin;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • This paper presents the development of the design of the robot element. Robot element design is an important part of robot design since it decides the performance and life time of the robot. It is necessary that the robot kinematics and the robot dynamics are accomplished to design the robot elements. The robot kinematics and dynamics determine the design parameters of the element. We developed a robot element design program with which a designer can design the robot element with convenience and reliability. The program is composed of motor, harmonic driver and ball-screw design. The program is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of the robot kinematics and dynamics. The robot element design program may be used to calculate the design parameters of the element that are necessary to design robot element. Therefore, the designer can decide upon the available robot elements available to perform the objective of the robot. The robot element design program is expected to increase the competitiveness and efficiency of the robot industry.

Game Platform and System that Synchronize Actual Humanoid Robot with Virtual 3D Character Robot (가상의 3D와 실제 로봇이 동기화하는 시스템 및 플랫폼)

  • Park, Chang-Hyun;Lee, Chang-Jo
    • Journal of Korea Entertainment Industry Association
    • /
    • v.8 no.2
    • /
    • pp.283-297
    • /
    • 2014
  • The future of human life is expected to be innovative by increasing social, economic, political and personal, including all areas of life across the multi-disciplinary skills. Particularly, in the field of robotics and next-generation games with robots, by multidisciplinary contributions and interaction, convergence between technology is expected to accelerate more and more. The purpose of this study is that by new interface model beyond the technical limitations of the "human-robot interface technology," until now and time and spatial constraints and through fusion of various modalities which existing human-robot interface technologies can't have, the research of more reliable and easy free "human-robot interface technology". This is the research of robot game system which develop and utilizing real time synchronization engine linking between biped humanoid robot and the behavior of the position value of mobile device screen's 3D content (contents), robot (virtual robots), the wireless protocol for sending and receiving (Protocol) mutual information and development of a teaching program of "Direct Teaching & Play" by the study for effective teaching.

A Study on Real Time Working Path Control of Vertical Type Robot System for the Forging and Casting Process Automation

  • Lim, O-Deuk;Kim, Min-Seong;Jung, Yang-Geun;Kang, Jung-Suk;Won, Jong-Bum;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.245-256
    • /
    • 2017
  • In this study, we describe a new approach to real-time implementation of working path control for the forging and casting manufacturing process by vertical type articulated robot system. The proposed control scheme is simple in structure, fast in computation, and useful for real-time control of factory automation based on robot system. Moreover, this scheme does not require any accurate parameter information, nor values of the uncertain parameters and payload variations. Reliability of the proposed controller is proved by simulation and experimental results for robot manipulator consisting of arm with six degrees of freedom under the variation of payloads and tracking trajectories in Cartesian space and joint space. The vertical type articulated robot manipulator with six axes made in SMEC Co., Ltd. has been used for real-time implementation test to illustrate the enhanced working path control performance for unmanned automation of the forging and casting manufacturing process.

A Study on Stable Motion Control of Humanoid Robot with 24 Joints Based on Voice Command

  • Lee, Woo-Song;Kim, Min-Seong;Bae, Ho-Young;Jung, Yang-Keun;Jung, Young-Hwa;Shin, Gi-Soo;Park, In-Man;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.17-27
    • /
    • 2018
  • We propose a new approach to control a biped robot motion based on iterative learning of voice command for the implementation of smart factory. The real-time processing of speech signal is very important for high-speed and precise automatic voice recognition technology. Recently, voice recognition is being used for intelligent robot control, artificial life, wireless communication and IoT application. In order to extract valuable information from the speech signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. Basic method used for extracting the features of the voice signal is to find the Mel frequency cepstral coefficients. Mel-frequency cepstral coefficients are the coefficients that collectively represent the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The reliability of voice command to control of the biped robot's motion is illustrated by computer simulation and experiment for biped walking robot with 24 joint.

A Study on the Development of Robust control Algorithm for Stable Robot Locomotion (안정된 로봇걸음걸이를 위한 견실한 제어알고리즘 개발에 관한 연구)

  • Hwang, Won-Jun;Yoon, Dae-Sik;Koo, Young-Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.259-266
    • /
    • 2015
  • This study presents new scheme for various walking pattern of biped robot under the limitted enviroments. We show that the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multilayer backpropagation neural network identification is simulated to obtain a learning control solution of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The main advantage of our scheme is that we do not require any knowledge about the system dynamic and nonlinear characteristic, and can therefore treat the robot as a black box. It is also shown that the neural network is a powerful control theory for various trajectory tracking control of biped robot with same learning-vase. That is, we do net change the control parameter for various trajectory tracking control. Simulation and experimental result show that the neural network is practically feasible and realizable for iterative learning control of biped robot.

A Study on Development and Real-Time Implementation of Voice Recognition Algorithm (화자독립방식에 의한 음성인식 알고리즘 개발 및 실시간 실현에 관한 연구)

  • Jung, Yang-geun;Jo, Sang Young;Yang, Jun Seok;Park, In-Man;Han, Sung Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.250-258
    • /
    • 2015
  • In this research, we proposed a new approach to implement the real-time motion control of biped robot based on voice command for unmanned FA. Voice is one of convenient methods to communicate between human and robots. To command a lot of robot task by voice, voice of the same number have to be able to be recognition voice is, the higher the time of recognition is. In this paper, a practical voice recognition system which can recognition a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. Given biped robots, each robot task is, classified and organized such that the number of robot tasks under each directory is net more than the maximum recognition number of the voice recognition processor so that robot tasks under each directory can be distinguished by the voice recognition command. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.