• Title/Summary/Keyword: Robot hands

Search Result 98, Processing Time 0.019 seconds

A Study on Interactive Talking Companion Doll Robot System Using Big Data for the Elderly Living Alone (빅데이터를 이용한 독거노인 돌봄 AI 대화형 말동무 아가야(AGAYA) 로봇 시스템에 관한 연구)

  • Song, Moon-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.305-318
    • /
    • 2022
  • We focused on the care effectiveness of the interactive AI robots. developed an AI toy robot called 'Agaya' to contribute to personalization with more human-centered care. First, by applying P-TTS technology, you can maximize intimacy by autonomously selecting the voice of the person you want to hear. Second, it is possible to heal in your own way with good memory storage and bring back memory function. Third, by having five senses of the role of eyes, nose, mouth, ears, and hands, seeking better personalised services. Fourth, it attempted to develop technologies such as warm temperature maintenance, aroma, sterilization and fine dust removal, convenient charging method. These skills will expand the effective use of interactive robots by elderly people and contribute to building a positive image of the elderly who can plan the remaining old age productively and independently

Modern Cause and Effect Model by Factors of Root Cause for Accident Prevention in Small to Medium Sized Enterprises

  • Kang, Youngsig;Yang, Sunghwan;Patterson, Patrick
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.505-510
    • /
    • 2021
  • Background: Factors related to root causes can cause commonly occurring accidents such as falls, slips, and jammed injuries. An important means of reducing the frequency of occupational accidents in small- to medium-sized enterprises (SMSEs) of South Korea is to perform intensity analysis of the root cause factors for accident prevention in the cause and effect model like decision models, epidemiological models, system models, human factors models, LCU (life change unit) models, and the domino theory. Especially intensity analysis in a robot system and smart technology as Industry 4.0 is very important in order to minimize the occupational accidents and fatal accident because of the complexity of accident factors. Methods: We have developed the modern cause and effect model that includes factors of root cause through statistical testing to minimize commonly occurring accidents and fatal accidents in SMSEs of South Korea and systematically proposed educational policies for accident prevention. Results: As a result, the consciousness factors among factors of root cause such as unconsciousness, disregard, ignorance, recklessness, and misjudgment had strong relationships with occupational accidents in South Korean SMSEs. Conclusion: We conclude that the educational policies necessary for minimizing these consciousness factors include continuous training procedures followed by periodic hands-on experience, along with perceptual and cognitive education related to occupational health and safety.

Robot-assisted Thymectomy with the 'da Vinci' Surgical System in a Patient with Myasthenia Gravis -A case report- (중증 근무력증 환자에서 da Vinci 로봇을 이용한 흉선절제술 -1예 보고-)

  • Yi, Jung-Hoon;Jeong, Sang-Seok;Woo, Jong-Soo;Cho, Gwang-Jo;Bang, Jung-Hee;Choi, Pill-Jo;Park, Kwon-Jae
    • Journal of Chest Surgery
    • /
    • v.43 no.5
    • /
    • pp.557-561
    • /
    • 2010
  • In the treatment of myasthenia gravis, thymectomy is generally accepted as the standard of therapy. For thymectomy, there have been various conventional open approaches including sternal splitting, but recently minimally invasive approaches have been increasingly applied. A 28-year-old man presenting with weakness of both hands and fatigability was diagnosed as having myasthenia gravis with thymic hyperplasia. He underwent a robot-assisted thymectomy with the 'da Vinci' surgical system. Through the right thoracic cavity, two thirds of the thymic gland was dissected, and the remainder was resected through the left; these procedures took, respectively, 1 hour and 30 minutes. The patient was discharged on the 8th postoperative day without complications. The minimally invasive approach with the 'da Vinci' surgical system is emerging as a popular choice and various advantages have been reported. Here we report the first successful case of robot-assisted thymectomy.

Development of a Robot Gripper For Handling Seedling Trays (육묘상자 취급을 위한 로봇 핸드의 개발)

  • Kim, Ki Dae;Cho, Sung Wha;Seo, Il Hwan;Lee, Hyun Dong
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.227-232
    • /
    • 1996
  • It is a tedious job to handle seedling trays in a green house with human hands because of their fluctuation when they are moving. A robotic gripper for handling a seedling tray has been developed., which has two fingers consisting of the vertical and horizontal bars. The maximum deflections at the center of the seedling trays were measured with various lengths of the horizontal bars. The length of 250 mm was revealed to be optimal one, resulting less than 15 mm deflection with a $540{\times}270mm$ seedling tray, which was acceptable for a practical use. For this study a LM system was adopted to move the fingers. To validate this system the robotic gripper was installed on a Cartesian robotic manipulator and their performance was tested several times with great success. The robotic manipulator used in this study was a general one, so a special one for this robotic gripper needs to be developed in future.

  • PDF

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

A Wearable Glove System for Rehabilitation of Finger Injured Patients (손가락 부상 환자의 재활을 위한 장갑형 웨어러블 시스템)

  • Ji-Hun Seong;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.379-386
    • /
    • 2023
  • When patients suffer from finger injuries, their finger joints can become stiff and inflexible due to decreased ability to exercise the finger tendons. This can lead to a loss of strength and difficulty using their hands. To address this, it is important to provide patients with consistent rehabilitation treatment that can help restore finger flexibility and strength simultaneously. In this study, we propose wearable gloves that use FSRs (force sensitive resistors) for finger strength training. The glove is designed to be adjustable using rubber bands and a custom PCB is designed for signal acquisition. For the evaluation of finger strength training, the result was analyzed in four cases. We suggest a vector that represents the center of five finger forces, and the result shows that the vector can indicate the level of force balance.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Morphometric Study on the Arterial Palmar Arch of the Hand (손바닥 동맥활에 관한 형태계측 연구)

  • Park, Bong Kwon;Jang, Soo Won;Choi, Seung Suk;Ahn, Hee Chang
    • Archives of Plastic Surgery
    • /
    • v.36 no.6
    • /
    • pp.691-701
    • /
    • 2009
  • Purpose: Deviations of arterial palmar arches in the hand can be explained on the embryological basis. The purpose of this study was to provide new information about palmar arches through cadaver's dissection. The values of the location and diameter in these vessels were analyzed in order to support anatomical research and clinical correlation in the hand. Methods: The present report is based on an analysis of dissections of fifty - three hands carried out in the laboratory of gross anatomy. A reference line was established on the distal wrist crease to serve as the X coordinate and a perpendicular line drawn through the midpoint between middle and ring fingers, which served as the Y coordinate. The coordinates of the x and y values were measured by a digimatic caliper, and statistically analyzed with Student's t - test. Results: Complete superficial palmar archs were seen in 96.2 % of specimens. In the most common type of males, the superficial arch was formed only by the ulnar artery. In the most common type of females, the superficial arch was formed anastomosis between the radial artery and the ulnar artery. The average length of the superficial and deep palmar arch is $110.3{\pm}33.0mm$ and $67.9{\pm}14.0mm$ respectively. Regarding the superficial palmar arch, ulnar artery starts $-16.1{\pm}5.1mm$ on X - line, and $2.5{\pm}24.5mm$ on Y - line. Radial artery appears on palmar side $7.7{\pm}3.2mm$ on X - line, and $20.9{\pm}10.9mm$ on Y - line. But radial artery starts on $6.3{\pm}3.6mm$ on X - line, and $3.4{\pm}5.1mm$ on Y - line. Digital arteries of superficial palmar arch starts on $6.1{\pm}3.7mm$, $33.9{\pm}8.8mm$ on index finger, $1.8{\pm}3.4mm$, $40.1{\pm}7.3mm$ on middle finger, $-3.2{\pm}4.9mm$, $42.6{\pm}7.0mm$ on ring finger, and $-8.9{\pm}5.1mm$, $42.5{\pm}80mm$ on little finger in respective X and Y coordinates. Radial artery of deep palmar arches measured at the palmar side perforating from the dorsum of hand. It's coordinates were $9.7{\pm}4.8mm$ on X - line, $21.7{\pm}10.2mm$ on Y - line. Ulnar artery was measured at hypothenar area, and it's coordinates were $-20.4{\pm}6.3mm$ on X - line, and $30.6{\pm}7.4mm$ on Y - line. Conclusions: Anatomically superficial palmar arch can be divided into a complete and an incomplete type. Each of them can be subdivided into 4 types. The deep palmar arch is less variable than the superficial palmar arch. We believe these values of the study will be used for the vascular surgery of the hand using the endoscope and robot in the future.