• Title/Summary/Keyword: Robot frame

Search Result 166, Processing Time 0.021 seconds

Real-time Control System for Mobile Robots and Path Tracking Control Algorithm (이동로봇의 실시간 주행제어를 위한 제어시스템 설계 및 경로 추종제어 방법)

  • 고경철;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1497-1508
    • /
    • 1993
  • Real-time mobile robot controllers usually have been designed focused on control theory without paying attention to the importance of system integration. This paper demonstrates that autonomous mobile robots require a real-time controller with a wide range of capabilities in addition to control theory. An architectural frame work supporting these capabilities has been designed in actual hardware environments. Individual modules such as a path planner, a path tracking controller, position estimators, wheel controllers and other cruical elements have been successfully integrated into the control system using this frame work. The overall performance of the system was investigated via a series of tracking experiments with a prototype mobile robot named LCAR deveoped in the laboratory. The context of the research involves the architecture, its implementation and experimental results.

Terminal Guidance Control for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 종단 유도 제어)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Kim, Sang-Hyun;Oh, Jun-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.335-338
    • /
    • 2006
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI Ocean Engineering Water Tank. As AUV ISIMI approachs the docking device, it is presented that attitude is unstable, because the lights Which is on Image Frame are disappeared. So we fix the rudder and stem, if the lights on Image Frame are reaching the specific area in the Image Frame. In this paper, we intend to solve the problems that were found in the testing, which, first, will be identified via simulation.

  • PDF

A Moving Camera Localization using Perspective Transform and Klt Tracking in Sequence Images (순차영상에서 투영변환과 KLT추적을 이용한 이동 카메라의 위치 및 방향 산출)

  • Jang, Hyo-Jong;Cha, Jeong-Hee;Kim, Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.163-170
    • /
    • 2007
  • In autonomous navigation of a mobile vehicle or a mobile robot, localization calculated from recognizing its environment is most important factor. Generally, we can determine position and pose of a camera equipped mobile vehicle or mobile robot using INS and GPS but, in this case, we must use enough known ground landmark for accurate localization. hi contrast with homography method to calculate position and pose of a camera by only using the relation of two dimensional feature point between two frames, in this paper, we propose a method to calculate the position and the pose of a camera using relation between the location to predict through perspective transform of 3D feature points obtained by overlaying 3D model with previous frame using GPS and INS input and the location of corresponding feature point calculated using KLT tracking method in current frame. For the purpose of the performance evaluation, we use wireless-controlled vehicle mounted CCD camera, GPS and INS, and performed the test to calculate the location and the rotation angle of the camera with the video sequence stream obtained at 15Hz frame rate.

Design Optimization and Endurance Assessment of Weld Area for LCD Robot Frame (LCD 로봇 주요 프레임에 대한 설계 최적화 및 용접부 수명평가)

  • Han, Sung Wook;Kang, Yun Sik;Kim, Teahyun;Kim, Sang Hyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • LCD robot vertical frame lets a arm assembly with glass substrate move up and down, so it must have high stiffness and strength. We applied new manufacturing process by using design optimization process such as topology and size optimization in order to satisfy the request of high stiffness and light weight. The proposed model should be evaluated for endurance strength. Therefore fatigue assessment for weak point of aluminum welding area of vertical frame studied with hot spot stress approach. And the actual stress measuring from test was compared and evaluated with the dynamic stress calculated from multi-body dynamics considering flexible body.

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.

Wearable Robot System Enabling Gaze Tracking and 3D Position Acquisition for Assisting a Disabled Person with Disabled Limbs (시선위치 추적기법 및 3차원 위치정보 획득이 가능한 사지장애인 보조용 웨어러블 로봇 시스템)

  • Seo, Hyoung Kyu;Kim, Jun Cheol;Jung, Jin Hyung;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1219-1227
    • /
    • 2013
  • A new type of wearable robot is developed for a disabled person with disabled limbs, that is, a person who cannot intentionally move his/her legs and arms. This robot can enable the disabled person to grip an object using eye movements. A gaze tracking algorithm is employed to detect pupil movements by which the person observes the object to be gripped. By using this gaze tracking 2D information, the object is identified and the distance to the object is measured using a Kinect device installed on the robot shoulder. By using several coordinate transformations and a matching scheme, the final 3D information about the object from the base frame can be clearly identified, and the final position data is transmitted to the DSP-controlled robot controller, which enables the target object to be gripped successfully.

Study for Operation Method of Underwater Cable and Pipeline Burying ROV Trencher using Barge and Its Application in Real Construction

  • Kim, Min-Gyu;Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Li, Ji-Hong;Yoon, Tae-Sagm;Ju, Jaeheung;Kwak, Han-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.361-370
    • /
    • 2020
  • We developed a heavy-duty work class ROV trencher named URI-T (Underwater robot it's trencher) that can conduct burial and maintenance tasks for underwater cables and small diameter pipelines. It requires various supporting systems, including a dynamic positioning (DP) vessel, launch and recovery system (LARS), A-frame, and winch in order to perform burial tasks because of its dimensions (6.5 m × 5.0 m × 4.5 m, 20 t) and the tough working environment. However, operating a DP vessel has disadvantages as it is expensive to rent and operate and it is difficult to adjust the working schedule for some domestic coast construction cases. In this paper, we propose a method using a barge instead of a DP vessel to avoid the above disadvantages. Although burying the cable and pipeline using a barge has lower working efficiency than a DP vessel, it can save construction expenses and does not require a large crew. The proposed method was applied over two months at the construction of the water supply in Yokji-do, and the results were verified.

DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

  • Jang, You Hyun;Kim, Jong Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Detection of Moving Objects using Depth Frame Data of 3D Sensor (3D센서의 Depth frame 데이터를 이용한 이동물체 감지)

  • Lee, Seong-Ho;Han, Kyong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.243-248
    • /
    • 2014
  • This study presents an investigation into the ways to detect the areas of object movement with Kinect's Depth Frame, which is capable of receiving 3D information regardless of external light sources. Applied to remove noises along the boundaries of objects among the depth information received from sensors were the blurring technique for the x and y coordinates of pixels and the frequency filter for the z coordinate. In addition, a clustering filter was applied according to the changing amounts of adjacent pixels to extract the areas of moving objects. It was also designed to detect fast movements above the standard according to filter settings, being applicable to mobile robots. Detected movements can be applied to security systems when being delivered to distant places via a network and can also be expanded to large-scale data through concerned information.