• Title/Summary/Keyword: Robot Workspace

Search Result 168, Processing Time 0.022 seconds

Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace (확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발)

  • Jeong, Sung Hun;Kim, Giseong;Gwak, Gyeong Min;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

The Effect of Link Length Variation on the Workspace of a Robot Arm (로봇 링크길이의 변화가 작업공간에 미치는 영향)

  • Choe, Byeong-O
    • 연구논문집
    • /
    • s.24
    • /
    • pp.13-26
    • /
    • 1994
  • The choice of design parameters for a robot arm depends on the desired workspace, load lifting capacity, application requirements, and the performance of the robot. The inverse process, which is the determination of a single robot's workspace for a given specification is also a common practice and is as important to the designers as it is to the users. Based on the geometric influence coefficients, the workspace areas on the vertical Y-Z plane are investigated and calculated. Using these areas, the effects of link parameters, link length ratios and joint rotation angles, are investigated.

  • PDF

A New Algorithm for Complete Coverage Path-Planning of Cleaning Robots (청소 로봇을 위한 경로 계획의 새로운 알고리즘)

  • Jiang, Liu;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.252-254
    • /
    • 2005
  • Completer coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots and painter robots. In this paper, a novel Water Flowing Algorithm (WFA) is proposed for cleaning robots to complete coverage path planning in unknown environment without obstacles. The robot covers the whole workspace just like that water fills up a container. First the robot goes to the lowest point in the workspace just like water flows to the bottom of the container. At last the robot will come to highest point in the workspace just like water overflows from the container and simultaneously the robot has covered the whole workspace. The computer simulation results show that the proposed algorithm enable the robot to plan complete coverage paths.

  • PDF

A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain (다족 보행로봇의 속도작업공간 해석)

  • 이지홍;전봉환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control (로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발)

  • Koo, Tae-Hoon;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

Study of a Two-wheel Mobile Robot with Linear Workspace Extension Structures (선형 작업 영역 확장 구조를 가진 두 바퀴 구동 모바일 로봇에 대한 연구)

  • Bae, Yeong-Geol;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a two-wheel balancing mobile robot with linear workspace extension structures. The two-wheel mobile robot has two linear motions at the waist and shoulder to have extended workspace. The linear motion of the waist and shoulder provides some structural advantages. A dynamic equation of the simplified robot system is derived. Simulation studies of the position control of the robot system are performed based on the dynamic equations. The dynamic relationship between a two-wheel mobile system and linear extension mechanism is observed by simulation studies.

A Robot Coverage Algorithm Integrated with SLAM for Unknown Environments (미지의 환경에서 동작하는 SLAM 기반의 로봇 커버리지 알고리즘)

  • Park, Jung-Kyu;Jeon, Heung-Seok;Noh, Sam-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • An autonomous robot must have a global workspace map in order to cover the complete workspace. However, most previous coverage algorithms assume that they have a grid workspace map that is to be covered before running the task. For this reason, most coverage algorithms can not be applied to complete coverage tasks in unknown environments. An autonomous robot has to build a workspace map by itself for complete coverage in unknown environments. Thus, we propose a new DmaxCoverage algorithm that allows a robot to carry out a complete coverage task in unknown environments. This algorithm integrates a SLAM algorithm for simultaneous workspace map building. Experimentally, we verify that DmaxCoverage algorithm is more efficient than previous algorithms.

Generation of 3-dimensional isocomfort workspace using the robot kinematics (로보트 기구학을 이용한 3차원 등편의 작업영역의 생성)

  • 기도형
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.11-21
    • /
    • 1997
  • The purpose of this study is to obtain 3-dimensional isocomfort workspace using the robot kinematics, which is based on perceived discomfort in varying postures for manipulating four types of controls. Fifteen healthy male subjects participated in the experiment where their perceived discomfort in the given postures was measured, in which L32 orthogonal array was adopted. The shoulder flexion and adduction-abduction, elbow flexion, types of controls, and right/left hands were selected as experimental variables. The results showed that the shoulder flexion and adduction-abduction, elbow flexion, and types of controls significantly affected the perceived discomfort at .alpha. =0.01. Depending upon the types of control used, regression equations predicting perceived dis- comfort and three dimensional isocomfort workspace were suggested based on the experiemntal cata. Using the equations, driver's isocomfort workspace in his/her cabin for pushing operation was illustrated, in which the robot kinematics was employed to describe the translational relationships between the upper arm and the lower arm/hand. It was ecpected that isocomfort workspace could be used as a valuable guideline to design workplaces ergonomically.

  • PDF

Design and Workspace Analysis of Korean Service Home Robot (한국형 가정용 서비스 로봇의 설계 및 작업 공간 분석)

  • Bae, Yeong Geol;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.158-165
    • /
    • 2013
  • This paper presents design and workspace analysis of a Korean home service robot. The robot is designed with specific needs of floor-task applications suitable for Korean life style. Shoulder and waist of the robot are adjusted by sliding mechanism to increase the workspace of the robot arms. Manipulators are designed and built and their workspaces are analyzed. Experimental studies of the robot for cleaning the floor are conducted.

Path Space Approach for Planning 2D Shortest Path Based on Elliptic Workspace Geometry Mapping

  • Namgung, Ihn
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.92-105
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on algebraic curve is developed and the concept of collision-free Path Space (PS) is introduced. This paper presents a Geometry Mapping (GM) based on two straight curves in which the intermediate connection point is organized in elliptic locus ($\delta$, $\theta$). The GM produces two-dimensional PS that is used to create the shortest collision-free path. The elliptic locus of intermediate connection point has a special property in that the total distance between the focus points through a point on ellipse is the same regardless of the location of the intermediate connection point on the ellipse. Since the radial distance, a, represents the total length of the path, the collision-free path can be found as the GM proceeds from $\delta$=0 (the direct path) to $\delta$=$\delta$$\_$max/(the longest path) resulting in the minimum time search. The GM of elliptic workspace (EWS) requires calculation of interference in circumferential direction only. The procedure for GM includes categorization of obstacles to .educe necessary calculation. A GM based on rectangular workspace (RWS) using Cartesian coordinate is also considered to show yet another possible GM. The transformations of PS among Circular Workspace Geometry Mapping (CWS GM) , Elliptic Workspace Geometry Mapping (EWS GM) , and Rectangular Workspace Geometry Mapping (RWS GM), are also considered. The simulations for the EWS GM on various computer systems are carried out to measure performance of algorithm and the results are presented.