• Title/Summary/Keyword: Robot Tracking

검색결과 1,013건 처리시간 0.025초

뉴럴네트워크를 이용한 이동로봇의 지능제어 (Intelligent Control of Mobile Robot Based-on Neural Network)

  • 김홍래;김용태;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.207-212
    • /
    • 2004
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

로봇 레이저용접을 위한 캐드캠 인터페이싱에 관한 연구 (Study on CAD/CAM Interfacing for Robot based Laser Welding)

  • 강희신;서정;김정오;박경택;조택동
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.67-69
    • /
    • 2007
  • Laser welding technology for automobile body is studied. Laser system, robot and seam tracking system are used for 3D laser welding system. The laser system is used 4kW Nd:YAG laser(HL4006D) of Trumpf and the robot system is used IRB6400R of ABB. The seam tracking system is SMRT-20LS of ServoRobot. The welding joints of steel plate are butt and lap joint. The 3 dimensional laser welding for non-linear pipe welding line is performed.

  • PDF

Fuzzy Modeling and Control of Wheeled Mobile Robot

  • Kang, Jin-Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.58-65
    • /
    • 2003
  • In this paper, a new model, which is a Takagi-Sugeno fuzzy model, for mobile robot is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and the outer loop is a PI controller designed for tracking the reference input, is suggested. Because the robot dynamics is nonlinear, it requires the controller to be insensitive to the nonlinear term. To achieve this objective, the model is developed by well known T-S fuzzy model. The design algorithm of inner state-feedback loop is regional pole-placement. In this paper, regions, for which poles of the inner state feedback loop are lie in, are formulated by LMI's. By solving these LMI's, we can obtain the state feedback gains for T-S fuzzy system. And this paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ(linear quadratic) cost. By using these properties, it is also shown in this paper that the PI controller can be obtained by solving the LQ problem.

원격제어 시스템의 종로봇인 이동 로봇의 제작과 힘 추종 제어 구현 (Implementation of Force Tracking Control of a Slave Mobile Robot for Teleoperation Control System)

  • 배영걸;최호진;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.681-687
    • /
    • 2010
  • In this paper, an implementation of force control for a slave mobile robot in tele-operation environment is presented. A mobile robot is built to have a force control capability with a force sensor and tested for force tracking control performances. Both position and contact force are regulated by a PID based hybrid control method and the impedance force control method. To minimize accumulated errors due to the adaptive impedance force control method, the novel force control method with a weighted function is proposed. Experimental studies of regulating contact forces for different control algorithms are tested and their performances are compared.

이족로봇을 이용한 이동물체 추적 기법 (A Scheme Tracking a Moving Object for Biped Robot)

  • 박상범;이부형;한영준;한헌수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.839-840
    • /
    • 2006
  • Our paper proposes a novel moving object tracking scheme for biped robot using a single camera. For walking control of a biped robot we analyze the dynamics of a three-dimensional inverted pendulum model. This analysis leads us a simple linear dynamics. And, the control parameter of the biped robot is derived from the feedback signal which converges the position of a image feature to the feature position of a desired image and the feedforward signal which compensates the motion component due to the moving object.

  • PDF

신경회로망을 이용한 비전 기반 이동 로봇의 위치제어에 대한 실험적 연구 (Experimental Studies of Vision Based Position Tracking Control of Mobile Robot Using Neural Network)

  • 정슬;장평수;원문철;홍섭
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.515-526
    • /
    • 2003
  • Tutorial contents of kinematics and dynamics of a wheeled drive mobile robot are presented. Based on the dynamic model, simulation studies of position tracking of a mobile robot are performed. The control structure of several position control algorithms using visual feedback are proposed and their performances are compared. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position control schemes are proposed. Experiments are conducted and the results show the performance of the vision based neural network control scheme fumed out to be the best among several proposed schemes.

Voice Command-based Prediction and Follow of Human Path of Mobile Robots in AI Space

  • Tae-Seok Jin
    • 한국산업융합학회 논문집
    • /
    • 제26권2_1호
    • /
    • pp.225-230
    • /
    • 2023
  • This research addresses sound command based human tracking problems for autonomous cleaning mobile robot in a networked AI space. To solve the problem, the difference among the traveling times of the sound command to each of three microphones has been used to calculate the distance and orientation of the sound from the cleaning mobile robot, which carries the microphone array. The cross-correlation between two signals has been applied for detecting the time difference between two signals, which provides reliable and precise value of the time difference compared to the conventional methods. To generate the tracking direction to the sound command, fuzzy rules are applied and the results are used to control the cleaning mobile robot in a real-time. Finally the experiment results show that the proposed algorithm works well, even though the mobile robot knows little about the environment.

Local Obstacle Avoidance of Nonholonomic Wheeled Mobile Robots in Trajectory Tracking

  • Lee, Young-Ho;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1172-1177
    • /
    • 2003
  • In this paper, we propose an obstacle avoidance technique in trajectory tracking of nonholonomic wheeled mobile robots. Input-output linearized backstepping controller is used in trajectory tracking, and repulsive type control input for obstacle avoidance is added to it. The added input is generated by fuzzy logic. And we do not add the two inputs directly but combine them via fuzzy logic, which determines the ratings of each input. Some simulations are performed to show that with the proposed algorithm, the mobile robot can track its reference trajectory even if there are multiple obstacles on the trajectory of robot.

  • PDF

유전자 알고리즘을 이용한 이동로봇의 지능제어 (An Intelligent Control of Mobile Robot Using Genetic Algorithm)

  • 한성현
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.126-132
    • /
    • 2004
  • This paper proposed trajectory tracking control based on genetic algorithm. Trajectory tracking control scheme are real coding genetic algorithm(RCGA) and back-propagation algorithm(BPA). Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studies have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using real coding genetic algorithm and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verity numerical simulations and the results show better performance than constant gain controller.

초음파 센서기반 추적 알고리즘을 이용한 자동 수술 조명 로봇 시스템 (Implementation of Auto Surgical Illumination Robotic System Using Ultrasonic Sensor-Based Tracking Algorithm)

  • 최동걸;이병주;김영수
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.363-368
    • /
    • 2007
  • Most surgery illumination systems have been developed as passive systems. However, sometimes it is inconvenient to relocate the position of the illumination system whenever the surgeon changes his pose. To cope with such a problem, this study develops an auto-illumination system that is autonomously tracking the surgeon's movement. A 5-DOF serial type manipulator system that can control (X, Y, Z, Yaw, Pitch) position and secure enough workspace is developed. Using 3 ultrasonic sensors, the surgeon's position and orientation could be located. The measured data aresent to the main control system so that the robot can be auto-tracking the target. Finally, performance of the developed auto-illuminating system was verified through a preliminary experiment in the operating room environment.