• 제목/요약/키워드: Robot Tracking

검색결과 1,013건 처리시간 0.03초

Robot Fish Tracking Control using an Optical Flow Object-detecting Algorithm

  • Shin, Kyoo Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.375-382
    • /
    • 2016
  • This paper realizes control of the motion of a swimming robot fish in order to implement an underwater robot fish aquarium. And it implements positional control of a two-axis trajectory path of the robot fish in the aquarium. The performance of the robot was verified though certified field tests. It provided excellent performance in driving force, durability, and water resistance in experimental results. It can control robot motion, that is, it recognizes an object by using an optical flow object-detecting algorithm, which uses a video camera rather than image-detecting sensors inside the robot fish. It is possible to find the robot's position and control the motion of the robot fish using a radio frequency (RF) modem controlled via personal computer. This paper proposes realization of robot fish motion-tracking control using the optical flow object-detecting algorithm. It was verified via performance tests of lead-lag action control of robot fish in the aquarium.

퍼지 시스템을 이용한 이동로봇의 궤적제어 (Tracking Control for Mobile Robot Based on Fuzzy Systems)

  • 박재훼;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.466-472
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. Since the mobile robot has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile robot. One of the well-known tracking controllers for the mobile robot is the back-stepping controller. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot. The conventional back-stepping controller is affected by the derived velocity reference by a kinematic controller. To improve the performance of the conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. The new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. Simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

전방향 구동 로봇에서의 비젼을 이용한 이동 물체의 추적 (Moving Target Tracking using Vision System for an Omni-directional Wheel Robot)

  • 김산;김동환
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1053-1061
    • /
    • 2008
  • In this paper, a moving target tracking using a binocular vision for an omni-directional mobile robot is addressed. In the binocular vision, three dimensional information on the target is extracted by vision processes including calibration, image correspondence, and 3D reconstruction. The robot controller is constituted with SPI(serial peripheral interface) to communicate effectively between robot master controller and wheel controllers.

이동 로봇 추적을 위한 스테레오 영상기반 퍼지 추적제어 (Fuzzy Tracking Control Based on Stereo Images for Tracking of Moving Robot)

  • 민현홍;유동상;김용태
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.198-204
    • /
    • 2012
  • 로봇들의 협동 작업을 위해서는 다양한 환경에서 다른 로봇들을 인식하고 추적하는 기술이 요구된다. 본 논문에서는 코드북 모델과 스테레오 영상 처리를 이용하여 이동 로봇을 인식하고, 퍼지 제어기를 사용해 추적하는 이동 로봇 추적 제어 시스템을 제안한다. 먼저 코드북 모델을 사용하여 영상의 전경과 배경을 분리하였다. 분리된 전경에서 색상정보를 기반으로 관심영역을 구해내고, 스테레오 영상처리를 통해 얻은 깊이 영상을 기반으로 이동 로봇까지의 실제 거리를 추정한다. 각 거리에 따라 열림 및 닫힘 연산을 적용하고, 모듈형 로봇의 크기에 맞춰 라벨링을 통해 효과적으로 이동 로봇을 인식한다. 추출된 이동 로봇의 움직임에 따른 효과적인 추적을 위하여 스테레오 영상 처리를 통해 얻은 거리 정보와 로봇의 이동 정보를 이용해 퍼지 제어기를 설계하여 이동 로봇 추적 시스템을 제안하였다. 제안한 퍼지 추적 제어 시스템의 성능은 실제 이동 로봇의 추적 실험을 통하여 검증하였다.

An Aerial Robot System Tracking a Moving Object

  • Ogata, Takehito;Tan, Joo Kooi;Ishikawa, Seiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1917-1920
    • /
    • 2003
  • Automatic tracking of a moving object such as a person is a demanding technique especially in surveillance. This paper describes an experimental system for tracking a moving object on the ground by using a visually controlled aerial robot. A blimp is used as the aerial robot in the proposed system because of its locality in motion and its silent nature. The developed blimp is equipped with a camera for taking downward images and four rotors for controlling the progression. Once a camera takes an image of a specified moving object on the ground, the blimp is controlled so that it follows the object by the employment of the visual information. Experimental results show satisfactory performance of the system. Advantages of the present system include that images from the air often enable us to avoid occlusion among objects on the ground and that blimp’s progression is much less restricted in the air than, e.g., a mobile robot running on the ground.

  • PDF

비홀로노믹 이동로봇의 자율주행을 위한 기하학적 경로 추종 및 장애물 회피 방법 (Geometric Path Tracking and Obstacle Avoidance Methods for an Autonomous Navigation of Nonholonomic Mobile Robot)

  • 김동형;김창준;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.771-779
    • /
    • 2010
  • This paper presents a method that integrates the geometric path tracking and the obstacle avoidance for nonholonomic mobile robot. The mobile robot follows the path by moving through the turning radius given from the pure pursuit method which is the one of the geometric path tracking methods. And the obstacle generates the obstacle potential, from this potential, the virtual force is obtained. Therefore, the turning radius for avoiding the obstacle is calculated by proportional to the virtual force. By integrating the turning radius for avoiding the obstacle and the turning radius for following the path, the mobile robot follows the path and avoids the obstacle simultaneously. The effectiveness of the proposed method is verified through the real experiments for path tracking only, static obstacle avoidance, dynamic obstacle avoidance.

퍼지 알고리즘을 이용한 차륜형 이동로봇의 경로추종제어 (Path Tracking Control for a Wheeled Mobile Robot using Fuzzy Algorithm)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.731-737
    • /
    • 1999
  • This paper describes the path tracking control for a mobile robot which has two casters at the front and rear to keep balance and two driving wheels on the left and right sides of its body. Power wheeled steering method is adapted to control heading of the robot. It is very difficult to find appropriate feedback gains when linear regulator control scheme is adapted to path tracking con-trol of this type of robot. Therefore in this paper we propose the path tracking control algorithm using the fuzzy logic control scheme for this type of root. Simulation to prove the validity of the proposed two algorithms is performed. The results are reported as last part in this paper.

  • PDF

Path Constraint한 궤적 계획법의 위치 오차 감소에 관한 연구 (A Study on the Path Constraint Error Reducing Trajectory Planning)

  • 황승재;박세웅;김동준;김갑일;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.843-845
    • /
    • 1995
  • There are a variety of trajectory and control algorithms available for robot trajectory tracking. Before using the enhanced trajectory and control algorithms to reduce the tracking error, we introduce the new method which reduces the tracking error by clipping the joint velocity. A lot of robot trajectory tracking methods are proposed to enhance the robot tracking, but irregular tracking errors are always accompanied. Up to now, these irregular tracking errors are gradually but uniformly reduced by introducing more complicated control algorithms. It is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance. By heuristic method, big tracking errors in these irregular ones are assumed mostly due to the fast moving of joint with respect to the same tracking and control method. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Development and Control of a Roadway Seam Tracking Mobile Robot

  • Cho, Hyun-Taek;Jeon, Poong-Woo;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2502-2507
    • /
    • 2003
  • In this paper, a crack sealing robot is developed. The crack sealing robot is built to detect, track, and seal the crack on the pavement. The sealing robot is required to brush all dirt in the crack out for preparing a better sealing job. Camera calibration has been done to get accurate crack position. In order to perform a cleaning job, the explicit force control method is used to regulate a specified desired force in order to maintain constant contact with the ground. Experimental studies of force tracking control are conducted under unknown environment stiffness and location. Crack tracking control is performed. Force tracking results are excellent and the robot finds and tracks the crack very well.

  • PDF

하나의 카메라를 이용한 이동로봇의 이동물체 추적기법 (Visual Tracking of Moving Target Using Mobile Robot with One Camera)

  • 한영준;한헌수
    • 제어로봇시스템학회논문지
    • /
    • 제9권12호
    • /
    • pp.1033-1041
    • /
    • 2003
  • A new visual tracking scheme is proposed for a mobile robot that tracks a moving object in 3D space in real time. Visual tracking is to control a mobile robot to keep a moving target at the center of input image at all time. We made it possible by simplifying the relationship between the 2D image frame captured by a single camera and the 3D workspace frame. To precisely calculate the input vector (orientation and distance) of the mobile robot, the speed vector of the target is determined by eliminating the speed component caused by the camera motion from the speed vector appeared in the input image. The problem of temporary disappearance of the target form the input image is solved by selecting the searching area based on the linear prediction of target motion. The experimental results have shown that the proposed scheme can make a mobile robot successfully follow a moving target in real time.