• Title/Summary/Keyword: Robot Sensor

Search Result 1,584, Processing Time 0.042 seconds

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

A Force/Moment Direction Sensor and Its Application in Intuitive Robot Teaching Task

  • Park, Myoung-Hwan;Kim, Sung-Joo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.236-241
    • /
    • 2001
  • Teach pendant is the most widely used means of robot teaching at present. Despite the difficulties of using the motion command buttons on the teach pendant, it is an economical, robust, and effective device for robot teaching task. This paper presents the development of a force/moment direction sensor named COSMO that can improve the teach pendant based robot teaching. Robot teaching experiment of a six axis commercial robot using the sensor is described where operator holds the sensor with a hand, and move the robot by pushing, pulling, and twisting the sensor in the direction of the desired motion. No prior knowledge of the coordinate system is required. The function of the COSMO sensor is to detect the presence f force and moment along the principal axes of the sensor coordinate system. The transducer used in the sensor is micro-switch, and this intuitive robot teaching can be implemented at a very low cost.

  • PDF

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

PUMA robot intelligent control using force/torque sensor (Force/Torque sensor를 이용한 PUMA Robot의 지능 제어)

  • 최성락;정광조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.339-342
    • /
    • 1996
  • In this paper, the method for controlling PUMA robot using F/T sensor is described. In the part of the setup automation, robot is used. The F/T sensor is located at robot end-effector and various experiments are executed such as peg in hole, gripping objects, tool changing, etc.

  • PDF

Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface (지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어)

  • Kho, Jaw-Won;Lim, Dong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.

Design of Calf Link Force Sensor of Walking Assist Robot of Leg Patients (편마비 다리환자를 위한 보행보조로봇의 발목 2축 힘센서 설계)

  • Choi, Chi-Hun;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • This paper describes the design and manufacture of a ankle two-axis force sensor of a walking assist robot for hemiplegic leg patient. The walking assist robot for the hemiplegic leg patient can safely control the robot by detecting whether the foot wearing the walking assist robot is in contact with the obstacle or not. To do so, a two-axis force sensor should be attached to the robot's ankle. The sensor is used to measure the force of a patient's ankle lower part. The two-axis force sensor is composed of a Fx force sensor, a Fy force sensor and a pulley, and they detect the x and y direction forces, respectively. The two-axis force sensor was designed using by FEM(Finite Element Method), and manufactured using by strain-gages. The characteristics experiment of the two-axis force sensor was carried out respectively. The test results indicated that the interference error of the two-axis force sensor was less than 1.2%, the repeatability error and the non-linearity of the two-axis force sensor was less than 0.04% respectively. Therefore, the fabricated two-axis force sensor can be used to measure the force of ankle lower part in the walking assist robot.

A development of map building sensor system for mobile robot using low cost photo sensor

  • Hyun, Woong-Keun
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.281-285
    • /
    • 2009
  • Mobile robot has various sensors for describing the external world. The ultrasonic sensor widely applied to the most mobile robot to detect the obstacle and environment owing to low cost, its easy to use. However, ultrasonic sensor has major problems: the uncertainty information of sensor, false readings caused by specular reflection, multi path effect, low angular resolution and sensitivity to changes in temperature and humidity. This paper describes a sensor system for map building of mobile robot. It was made of low cost PSD (Position Sensitive Detector) sensor array and high speed RISC MPU. PSD sensor is cost effective and light weighting but its output signal has many noises. We propose heuristic S/W filter to effectively remove these noises. The developed map building sensor system was equipped on a mobile robot and was compared with ultrasonic sensor through field test.

Development of a 6-axis robot's finger force/moment sensor for making a robot's gripper (로봇의 그리퍼 제작을 위한 6 축 로봇손가락 힘/모멘트센서의 개발)

  • Kim, Gab-Soon;Lee, Hun-Doo;Park, In-Chul;Son, Young-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.758-763
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for making a robot's gripper. In order to safely grasp and unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it.

  • PDF

A study of Human robot Walking Method Using Zigbee Sensor Network (센서 네트워크를 이용한 2족 보행 로봇의 워킹 방법에 관한 연구)

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.375-377
    • /
    • 2009
  • This paper researched the algorithm of robot's walking and action on the basis of robot studied and made at our laboratory and studied how to efficiently control the robot joints by developing wireless Digital Servo Motor using Zigbee Sensor Network Module which is using at wide part recently. I realized the stable walking by adopt Press Sensor at the bottom of robot foot to get stability of walking. Also I let the algorithm calculate the robot movement to make the joint motion and monitored the robot walk to its motion. At this Paper, I studied the method organizing the motion by the each robot walking and measuring the torque applying to the joint. And I also knew that it is possible to make its control and construct hardware more conveniently than them of the existing studied and controling 2Legs Walking Robot by applying it at walking robot and developing wireless servo motor by Zirbee Sensor Network.

  • PDF

A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function (청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.