• 제목/요약/키워드: Robot Rehabilitation

Search Result 192, Processing Time 0.028 seconds

Water-jet Cleaning Motion of the In-Pipe Robot with Screw Drive Inside the Water Pipes

  • Kang, Hoon;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.894-901
    • /
    • 2012
  • For more efficient use of the high pressure water-jet in rehabilitation of the water pipes, we have studied the water-jet cleaning motion of the in-pipe robot with screw drive. The mathematical models of the water-jet in the straight and the curved pipe (90 degrees elbow), representative features of the water mains, were designed to understand the water-jet motion and simulations have been performed. Furthermore the experiments has been conducted to validate the simulations by using the prototype in-pipe robot in the 3-D pipeline. The simulation results show that the water-jet motion in the straight pipe has a constant water-jet interval, whereas the motion in the curved pipe is changed by its position. By the comparison of the simulation and the experimental results, we have demonstrated that the simulations successfully estimate the water-jet motion inside the water pipes. Therefore in-pipe robot operators can predict a water-jet motion for a target water pipe through the simulation and flexibly make a proper water-jet motion by changing the robot configurations before a cleaning work.

Kinematic Characteristics of Walking-Assistance Robot (보행보조 로봇의 운동학적 특성)

  • Bae, Ha-Suk;Kim, Jin-Oh;Chun, Han-Yong;Park, Kwang-Hun;Lee, Kyung-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.503-515
    • /
    • 2011
  • We developed a walking-assistance robot for walking rehabilitation and assessed the kinematic characteristics of a prototype. The walking-assistance robot is composed of hip, knee, and ankle joints, and each joint is driven by a motor with a decelerator. The equations of angular displacement while walking were derived by theoretically analyzing human locomotion, and the calculated angular displacements were then applied to the robot controller. The output angular displacement of each joint was measured and compared with its input angular displacement in walking experiments on a treadmill at various walking speeds and strides. The differences between the input and output angular displacements are 5.22% for the hip and 2.97% for the knee joints, and it has been confirmed that the walking-assistance robot works well.

Development of Electromyographic Signal Responsive Walking Rehabilitation Robot System Enables Exercise Considering Muscle Condition (근육 상태를 고려한 운동이 가능한 근전도 신호 반응형 보행 재활 로봇 시스템 개발)

  • Sang-Il Park;Chang-Su Mun;Eon-Hyeok Kwon;Seong-Won Kim;Si-Cheol Noh
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.126-133
    • /
    • 2023
  • In this study, electromyography was obtained in the six muscle areas that move the joints of the two legs, and by analyzing it, an exercise robot system capable of gait rehabilitation was proposed in consideration of the individual's muscle state. Through this, the system was constructed to prevent the effect of exercise from decreasing because the patient's will was not reflected when walking exercise was simply provided automatically. As a result of the evaluation of the developed system, it was confirmed that the pedestrian rehabilitation robot system manufactured through this study had performance suitable for the design requirements, and it was also confirmed that the usability evaluation was comprehensively satisfactory. The results of this study are thought to be of great help to patients who are having difficulty in gait rehabilitation, and are believed to be helpful in the development of electromyography signal-based gait robot systems.

The Effects of PNF and Trunk Stabilization Robot Training on Trunk Stability and Balance in Patients with Chronic Stroke (PNF 목 패턴을 병행한 체간안정로봇훈련이 만성 뇌졸중 환자의 체간 안정성 및 균형능력에 미치는 영향)

  • Moon, Hyun-Min;Kim, Dong-Hoon
    • PNF and Movement
    • /
    • v.19 no.1
    • /
    • pp.67-77
    • /
    • 2021
  • Purpose: The purpose of the study was to identify the effects of proprioceptive neuromuscular facilitation (PNF) training and robot rehabilitation training on trunk stability and standing balance in individuals with chronic stroke. Methods: There were 30 patients with chronic stroke, divided into two groups: 15 subjects who received PNF and robot training (the experimental group) and 15 subjects who received standard conservative training (the control group), that participated. The experimental group received treatment for 60 min: 30 min of conventional physical therapy, 15 min of PNF training, and 15 min of robot training. The control group received conventional physical therapy for 60 min. Trunk stabilization (trunk impairment scale) and standing balance (center of pressure, limit of stability, modified functional reach test, and Berg balance scale) were measured before and after intervention. Results: Within each group, both the experimental and control groups significantly improved after the intervention in all tests; however, the experimental group showed greater improvement in scores on the trunk impairment scale, the center of pressure, the limit of stability, the modified functional reach test, and the Berg balance scale. Conclusion: The study verified that PNF training and robot training had a positive influence on trunk stability and standing balance indices in patients with chronic stroke.

Development of the Myoelectric Hand with a 2 DOF Auto Wrist Module (2 자유도 자동손목관절을 가진 근전 전동의수 개발)

  • Park, Se-Hoon;Hong, Beom-Ki;Kim, Jong-Kwon;Hong, Eyong-Pyo;Mun, Mu-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.824-832
    • /
    • 2011
  • An essential consideration to differentiate prosthetic hand from robot hand is its convenience and usefulness rather than high resolution or multi-function of the robot hand. Therefore, this study proposes a myoelectric hand with a 2 DOF auto wrist module which has 6 essential functions of the human hand such as open, grasp, pronation, supination, extension, flexion, which improves the convenience of the daily life. It consists of the 3 main parts, the myoelectric sensor for input signal without additional attachment to operate the prosthetic hand, hand mechanism with high-torqued auto-transmission mechanism and self-locking module which guarantee the safety under the abrupt emergency and minimum power consumption, and dual threshold based controller to make easy for adopting the multi-DOF myoelectric hand. We prove the validity of the proposed system with experimental results.

Design of a Two-Axis Force Sensor for Measuring Arm Force of an Upper-Limb Rehabilitation Robot (상지재활로봇의 팔힘측정용 2축 힘센서 설계)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 2015
  • This paper describes the design of a two-axis force sensor with two step plate beams for measuring forces in an upper-limb rehabilitation robot. The two-axis force sensor is composed of a Fz force sensor and a Ty torque sensor. The Fz force sensor measures the force applied to a patient's arm pushed by a rehabilitation robot and the force of patient's arm. The Ty torque sensor measures the torque generated by a patient's arm motion in an emergency. The structure of sensor is composed of a force transmitting block, two step plate beams and two fixture blocks. The two-axis force sensor was designed using FEM (Finite Element Method), and manufactured using strain-gages. The characteristics test of the two-axis force sensor was carried out. as a test results, the interference error of the two-axis force sensor was less than 1.24%, the repeatability error of each sensor was less than 0.03%, and the non-linearity was less than 0.02%.