• Title/Summary/Keyword: Robot Rehabilitation

Search Result 191, Processing Time 0.026 seconds

Research on Technology Status and Development Direction of Wearable Robot (웨어러블 로봇의 기술 현황 조사 및 개발 방향 제안 연구)

  • Kim, Hye Suk;Koo, Da Som;Nam, Yun Ja;Cho, Kyu-Jin;Kim, Seonyoung
    • Fashion & Textile Research Journal
    • /
    • v.21 no.5
    • /
    • pp.640-655
    • /
    • 2019
  • Technology status was investigated by analyzing patents and development cases of wearable robots. Development direction of wearable robot for wearability was also suggested by understanding the problems of wearability from development cases through the FGI technique. The number of patents per technical field was the most in the field of strength support, but AI in the technology field was different in each country; Korea was found to be poor in the category of daily living assistance. The number of patents by technology category was the most in the category of muscular strength assistance. However, the values of AI in the technology category were different in each country; Korea was found to be poor in the category of daily living assistance. Development cases were focused on rehabilitation, so development is not fulfilled uniformly by use purpose. By wearing body parts, robots with single function type were mainly developed. Rigid material robots were mainly developed. It was confirmed that wearable robot technology is not developed evenly in the category of application because it is in the early stage of the technical proposal and centered on main performance improvement. We derived twelve wearable conditions for wearable robots: Shape and Size Appropriateness, Movement Appropriateness, Composition Appropriateness, Physiological Appropriateness, Performance Satisfaction, Ease of Operation, Safety, Durability, Ease of Dressing, Ease of Cleaning, Portability and Ease of Storage and Appearance Satisfaction. Finally, the development direction of a wearable robot for each wearable condition was suggested.

Long-term Effect of Robot-assisted Step Training on the Strength of the Lower Extremity and Gait Speed in a Chronic Stroke Patient: A Preliminary Study (장기간의 로봇 보조 스텝훈련이 만성 뇌졸중 환자의 하지 근력과 보행속도에 미치는 영향: 예비 연구)

  • Se-Jung, Oh;Yong-Jun, Cha;Jongseok, Hwang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.4
    • /
    • pp.65-73
    • /
    • 2022
  • PURPOSE: The present research examined the effects of progressive robot-assisted step training on the strength of the lower extremity and gait speed of an individual with stroke through changes between the baseline and the intervention stage (1, 3, 6, 9, and 12 months). METHODS: A single-subject (A-B) design was performed for a chronic stroke patient aged 70 years old. The robot-assisted step training was conducted three times a week during 12 months (40 minutes/session), and the assessment was conducted a total of seven times between the baseline and the intervention (No. 1, 3, 6, 9, and 12 months) to determine the effect of the intervention. RESULTS: As a result of the intervention, the muscle strength at the lower extremity of the paralysis side increased by the greatest extent 12 months after the intervention compared to the baseline, and the gait speed via the 10-meter walk test was increased as well. CONCLUSION: Long-term robot-assisted step training might be an effective intervention for improving the strength of the paretic lower extremity muscles and gait speed in stroke patients with difficulty walking independently. Further studies with sufficient sample sizes and a randomized control group will be needed to evaluate the long-term effects of robotic stepping rehabilitation.

Derived of agenda priority for research and development with physical therapy technology (물리치료 기술 개발 방향 정립을 위한 세부 연구 분야 우선순위 도출)

  • Kim, Hyeong Geun;Ha, Hyun Geun;Bae, Young-Hyeon
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Background: The purpose of this study was to suggest agenda priorities for research and development with physical therapy technology. Design: Cross-sectional study. Methods: A survey was consecutively done to 62 experts working in physical therapy research areas to investigate the priority of the categories. Paired T-tests and Importance-Performance Analysis using SPSS 21.0 package were conducted to find the differences between importance and satisfaction of the categories and the order of priority. Results: In results, it was developed that the research and development with physical therapy technology were divided with 18 categories. And the importance were significantly higher than satisfaction in 18 categories. Specifically, categories about assistive technology and robot rehabilitation were found to be on the high importance and lower performance quadrant. Conclusion: In sum, this study was meaningful in finding usage categories of research and development with physical therapy technology and investigating Importance-Performance differences for deriving research and development with physical therapy technology.

Effect of Robot-Assisted Wearable Exoskeleton on Gait Speed of Post-Stroke Patients: A Systematic Review and Meta-Analysis of a Randomized Controlled Trials

  • Chankyu Kim;Hyun-Joong Kim
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.471-477
    • /
    • 2022
  • Objective: The greatest motor impairment after stroke is a decreased ability to walk. Most stroke patients achieve independent gait, but approximately 70% do not reach normal speed, making it difficult to reach a standard of daily living. Therefore, a wearable exoskeleton is recommended for optimal independent gait because different residual disorders hinder motor function after stroke. This review synthesized the effect on gait speed in randomized controlled trials (RCTs) in which gait training using a wearable exoskeleton was performed on post-stroke patients for qualitative and quantitative analysis. Design: A systematic review and meta-analysis of a randomized controlled trials Methods: RCTs using wearable exoskeletons in robotic rehabilitation of post-stroke patients were extracted from an international electronic database. For quality assessment and quantitative analysis, RevMan 5.4 was used. Quantitative analysis was calculated as the standardized mean difference (SMD) and presented as a random effect model. Results: Five studies involving 197 post-stroke patients were included in this review. As a result of the analysis using a random effect model, gait training using a wearable exoskeleton in post-stroke patients showed a significant improvement in gait speed compared to the non-wearing exoskeleton (SMD=1.15, 95% confidence interval: 0.52 to 1.78). Conclusions: This study concluded that a wearable exoskeleton was more effective than conventional gait training in improving the gait speed in post-stroke patients.

A Study on Robot Arm Control System using Detection of Foot Movement (발 움직임 검출을 통한 로봇 팔 제어에 관한 연구)

  • Ji, H.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2015
  • The system for controlling the robotic arm through the foot motion detection was implemented for the disabled who not free to use of the arm. In order to get an image on foot movement, two cameras were setup in front of both foot. After defining multiple regions of interest by using LabView-based Vision Assistant from acquired images, we could detect foot movement based on left/right and up/down edge detection within the left/right image area. After transferring control data which was obtained according to left/right and up/down edge detection numbers from two foot images of left/right sides through serial communication, control system was implemented to control 6-joint robotic arm into up/down and left/right direction by foot. As a result of experiment, we was able to get within 0.5 second reaction time and operational recognition rate of more 88%.

  • PDF

The effect of robotic therapy on patient function after total hip arthroplasty due to developmental dysplasia of the hip: a case study (발달성 엉덩관절 이형성증으로 인한 엉덩관절 전치환술 후 로봇치료가 환자의 기능에 미치는 영향: 사례연구 )

  • So Yeong Kim;Chi Bok Park;Byeong Geun Kim
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Background: The advantages of robotic therapy have recently been attempted several times in the rehabilitation of total hip arthroplasty (THA) patients. Therefore, this study also aims to report a case of how robot therapy affects the function of THA patients due to developmental dysplasia of the hip (DDH). Design: Case Study. Method: This study used the A-B-A' design. Period A is before robotic therapy, period B is robotic therapy, and period A' is after robotic therapy. The subjects performed physical therapy and occupational therapy for five days each during the baseline period A and A'. In intervention period B, robotic therapy was performed for five days along with the baseline intervention. This study was conducted for a total of fifteen days. The subjects' sit to stand (STS), timed up and go (TUG), and 10 metre walk (10MW) were evaluated. Result:: STS and TUG were significantly improved in periods B and A' compared to period A (p<0.05), and STS was significantly improved in period A' compared to period B (p<0.05). 10MW showed no significant improvement in periods B and A' compared to period A. Conclusions: This study confirmed that robot therapy was an effective intervention in improving the function of women in their 30s who underwent THA due to DDH. In the future, a study comparing the control group should be performed.

The Effects of Stair Climbing Using Wearable Robot Bot Fit's Resistance

  • Jang-hoon Shin;Hwang-Jae Lee;Dokwan Lee;Wan-hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.205-212
    • /
    • 2024
  • Objective: The purpose of this study is to confirm the exercise effect when combining wearable exercise assist robot, Bot fit's resist mode (Samsung Electronics) and stair climbing. Design: Cross-section study Methods: Targeting 53 adults and seniors, foot pressure and muscle activity were measured when climbing 3-story stairs using foot pressure measurement equipment (W-insole Science System) and surface muscle activity measurement equipment (sEMG; FreeEMG, BTS Bioengineering, Italy) using Bot Fit's resist mode. All subjects were measured without wearing Bot Fit, and the data between the two conditions were compared and analyzed. Results: The front area(p<0.01) and middle area(p<0.05) foot pressures of adults significantly increased when wearing the Bot fit. Frontal area foot pressure significantly increased in elderly people with knee arthritis and obesity(p<0.05). The gastrocnemius activity in all subjects significantly decreased after wearing Bot Fit(p<0.01). In elderly people with knee arthritis, the muscle activity of the rectus femoris was significantly reduced(p<0.05)., and in obese elderly people, the muscle activity of the gastrocnemius muscle was significantly reduced(p<0.05). Conclusions: Based on the results of this study, it is possible to induce correct stair climbing posture when climbing stairs using Bot fit resistance mode. In particular, it is expected to be an effective exercise for strengthening muscle endurance by increasing the activity of the rectus femoris muscle.

A Systematic Review of the Effects of Robotic-Assisted Training on Gait Performance in Persons with Subacute Hemiparetic Stroke (아급성 편마비 뇌졸중 환자의 보행에 로봇-보조훈련이 미치는 영향에 관한 체계적 고찰)

  • Se-in Park;Su-jin Hwang
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Purpose: This systematic review aims to determine whether robot-assisted training is more effective in gait training for persons with subacute hemiparetic stroke. Methods: This study adopted a systematic review study design focused on subacute hemiparetic stroke, and four core academic databases were searched until June 11, 2021, for relevant studies, including PubMed, Embase, the Cochrane Library, and ProQuest Central. The review included randomized controlled trials (RCTs) evaluating the effects of robotic-assisted training on gait performance in persons with a diagnosis of subacute hemiparetic stroke. The selected RCT studies were qualitatively synthesized based on the population, intervention, comparison, outcome, settings, and study design (PICOS-SD). Results: The study selected five RCTs involving 253 subacute hemiparetic stroke patients and performing robotic-assisted gait training using the following devices: the Lokomat, Morning Walk, Walkbot, ProStep Plus, or Gait Trainer II. Five RCTs were eligible for the meta-analysis after quantitative synthesis, and the results showed that the robot-assisted gait training group had a greater gait performance than the control group based on the 10-meter walk test, Berg balance scale, Rivermed mobility index, functional ambulation category, and modified Barthel index. Conclusion: The results of this study showed that the gait performance of subacute hemiparetic stroke patients changes throughout robot-assisted gait training, but there were no indications that any of the clinically relevant effects of robot-assisted training are greater than those of conventional gait training. Further, the small sample size and different therapeutic intensities indicate that definitive conclusions could not be made.

A Disital Siver Care for the Health and Rehabilitation of the Elderly (노인 건강과 재활을 위한 디지털 실버케어)

  • Kang, Seungae
    • Convergence Security Journal
    • /
    • v.19 no.3
    • /
    • pp.81-86
    • /
    • 2019
  • This study introduces trends on silver care implemented with the fourth industrial revolution technology, and discusses the use of digital technology for elderly health and rehabilitation by reviewing relevant literature to examine and present directions for future digital-based silver care commercialization. First, health smart home, which is a smart residential service available through digital technology or IT technology that supports independent living in your home, is available. Second, there are technical services using artificial intelligence(AI) and robots. Robots based on advanced intelligence can serve as an assistant for the health and rehabilitation of senior citizens by supporting services that enable the daily lives of senior, checking their health conditions, and high-quality medical care. For the commercialization of these silver care systems, information and services appropriate to the current situation, such as the physical ability and health status of the elderly, should be provided, and it would be desirable to gradually expand the use of essential technology to reflect the needs of the elderly in use so that the digital alienated.