• Title/Summary/Keyword: Robot Motor

Search Result 532, Processing Time 0.03 seconds

A Human-Robot Interface Using Eye-Gaze Tracking System for People with Motor Disabilities

  • Kim, Do-Hyoung;Kim, Jae-Hean;Yoo, Dong-Hyun;Lee, Young-Jin;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.229-235
    • /
    • 2001
  • Recently, service area has been emerging field f robotic applications. Even though assistant robots play an important role for the disabled and the elderly, they still suffer from operating the robots using conventional interface devices such as joysticks or keyboards. In this paper we propose an efficient computer interface using real-time eye-gaze tracking system. The inputs to the proposed system are images taken by a camera and data from a magnetic sensor. The measured data is sufficient to describe the eye and head movement because the camera and the receiver of a magnetic sensor are stationary with respect to the head. So the proposed system can obtain the eye-gaze direction in spite of head movement as long as the distance between the system and the transmitter of a magnetic position sensor is within 2m. Experimental results show the validity of the proposed system in practical aspect and also verify the feasibility of the system as a new computer interface for the disabled.

  • PDF

Generation of 3 Dimensional Image Model from Multiple Digital Photographs (다중 디지털 사진을 이용한 3차원 이미지 모델 생성)

  • 정태은;석정민;신효철;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1634-1637
    • /
    • 2003
  • Any given object on the motor-driven turntable is pictured from 8 to 72 different views with a digital camera. 3D shape reconstruction is performed with the integrated software called by Scanware from these multiple digital photographs. There are several steps such as configuration, calibration, capturing, segmentation, shape creation, texturing and merging process during the shape reconstruction process. 3D geometry data can be exported to cad data such as Autocad input file. Also 3D image model is generated from 3D geometry and texture data, and is used to advertise the model in the internet environment. Consumers can see the object realistically from wanted views by rotating or zooming in the internet browsers with Scanbull spx plug-in. The spx format allows a compact saving of 3D objects to handle or download. There are many types of scan equipments such as laser scanners and photogrammetric scanners. Line or point scan methods by laser can generate precise 3D geometry but cannot obtain color textures in general. Reversely, 3D image modeling with photogrammetry can generate not only geometries but also textures from associated polygons. We got various 3D image models and introduced the process of getting 3D image model of an internet-connected watchdog robot.

  • PDF

Accurate Control Position of Belt Drives under Acceleration and Velocity Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.474-483
    • /
    • 2003
  • Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. Unfortunately, the flexible dynamics deteriorates the positioning accuracy. Therefore, there exists a trade-off between the simplicity of the control strategy to reject time varying disturbance caused by flexibility of the belt and precision in performance. Resonance of the system further leads to vibrations and poor accuracy in positioning. In this paper, accurate positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method was proven by experiments carried out with an actual belt driven system. The accuracy of the simulation study based on numerical methods was also verified with the analytical solutions derived.

A Study on Measurement and Control of position and pose of Mobile Robot using Ka13nan Filter and using lane detecting filter in monocular Vision (단일 비전에서 칼만 필티와 차선 검출 필터를 이용한 모빌 로봇 주행 위치.자세 계측 제어에 관한 연구)

  • 이용구;송현승;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.81-81
    • /
    • 2000
  • We use camera to apply human vision system in measurement. To do that, we need to know about camera parameters. The camera parameters are consisted of internal parameters and external parameters. we can fix scale factor&focal length in internal parameters, we can acquire external parameters. And we want to use these parameters in automatically driven vehicle by using camera. When we observe an camera parameters in respect with that the external parameters are important parameters. We can acquire external parameter as fixing focal length&scale factor. To get lane coordinate in image, we propose a lane detection filter. After searching lanes, we can seek vanishing point. And then y-axis seek y-sxis rotation component(${\beta}$). By using these parameter, we can find x-axis translation component(Xo). Before we make stepping motor rotate to be y-axis rotation component(${\beta}$), '0', we estimate image coordinates of lane at (t+1). Using this point, we apply this system to Kalman filter. And then we calculate to new parameters whick make minimum error.

  • PDF

Development of an Autonomous Worker-Following Transport Vehicle (I) - Manufacture and indoor experiment of the prototype vehicle - (농작업자 자동 추종 운반차 개발(I) - 시작기 제작 및 실내성능시험 -)

  • 권기영;정성림;강창호;손재룡;한길수;정석현;장익주
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.409-416
    • /
    • 2002
  • This study was conducted to develop a vehicle, leading or following a worker at a certain distance to assist laborious transporting works in greenhouses. A prototype vehicle, which consisted of the rear driving, the front steering and the console units, was designed and tested in the ideal indoor conditions. Results of this study were summarized as following: 1. The driving unit was designed to travel at the speed ranges of 0.3∼0.8 m/sec depending on the operating modes with a maximum payload of 100 kg. 2. The console unit consisted of a main-board including a 80C196KC microprocessor and peripheral devices, a power-board and safety interlock. Worker-leading, and following modes were available in automatic and manual modes. 3. Steering was achieved by turning the steering motor against the sensed direction. Proper steering angles for correcting travel direction were determined as 5 and 9 degrees when sensing cultivation beds and plants, respectively.

Development of a CAN-based Controllsr for Mobile Robots using a DSP TMS320C32 (DSP를 이용한 CAN 기반 이동로봇 제어기 개발)

  • Kim, Dong-Hun;You, Bum-Jae;Hwang-Bo, Myung;Lim, Myo-Taeg;Oh, Sang-Rok;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2784-2786
    • /
    • 2000
  • Mobile robots include control modules for autonomous obstacle avoidance and navigation. They are range modules to detect and avoid obstacles. motor control modules to operate two wheels. and encoder modules for localization. There is needed an appropriate controller for each modules. In this paper. a control system. including 18 channels for Sonar sensors. 4 channels for PWM modules. and 4 channels for encoder modules. is proposed using TMS320C32 DSP adopted with CAN. The board communicates with other modules by CAN. so that mobile robots can perform several tasks in real time. So we can realize on autonomous mobile robot with basic functions such as obstacle avoidance by using the developed controller. Especially. this controller has 100 msec scan time for 16 sonar sensors and can detect closer objects comparing with standard sonar sensors.

  • PDF

Implementation of Operating Software for Small Multi-Jointed Robots (소형 다관절로봇을 위한 운용 소프트웨어 구현)

  • Son, Hyun-Seung;Kim, Woo-Yeol;Kim, Young-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.946-951
    • /
    • 2009
  • The small multi-jointed robots for most education are developed with the way of firmware. But the firmware may be very difficult to develop as gradually increasing throughputs and control routines. Due to limit of firmware we try to use on RTOS, but hard to adapt on the small multi-jointed robots. It would be hard to install RTOS into the small multi-jointed robots because of the size capacity of RTOS, and lack of libraries for control of the particular hardware. Moreover, even its RTOS with many functions causes its to make overheads scheduling, TCB (Task Control Block), and task states. Also to keep maintenance of RTOS, it is composed of components for the whole structure of my proposed RTOS. Additionally, We provided with libraries of servo motor and sensor control and developed RMS (Rate Montonic scheduler) to handle tasks on real time and reduce overheads. Therefore, It is possible to work the fixed priority and task preemptive way. We show one example of the multi-jointed robot installed with my proposed RTOS, which shows to obstacle avoidance and climbing up the slope.

Gear Fault Diagnosis Based on Residual Patterns of Current and Vibration Data by Collaborative Robot's Motions Using LSTM (LSTM을 이용한 협동 로봇 동작별 전류 및 진동 데이터 잔차 패턴 기반 기어 결함진단)

  • Baek Ji Hoon;Yoo Dong Yeon;Lee Jung Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.445-454
    • /
    • 2023
  • Recently, various fault diagnosis studies are being conducted utilizing data from collaborative robots. Existing studies performing fault diagnosis on collaborative robots use static data collected based on the assumed operation of predefined devices. Therefore, the fault diagnosis model has a limitation of increasing dependency on the learned data patterns. Additionally, there is a limitation in that a diagnosis reflecting the characteristics of collaborative robots operating with multiple joints could not be conducted due to experiments using a single motor. This paper proposes an LSTM diagnostic model that can overcome these two limitations. The proposed method selects representative normal patterns using the correlation analysis of vibration and current data in single-axis and multi-axis work environments, and generates residual patterns through differences from the normal representative patterns. An LSTM model that can perform gear wear diagnosis for each axis is created using the generated residual patterns as inputs. This fault diagnosis model can not only reduce the dependence on the model's learning data patterns through representative patterns for each operation, but also diagnose faults occurring during multi-axis operation. Finally, reflecting both internal and external data characteristics, the fault diagnosis performance was improved, showing a high diagnostic performance of 98.57%.

Analysis of driving characteristics of electric wheelchair for indoor driving using lithium-ion battery (리튬이온 배터리를 적용한 실내용 전동휠체어 주행특성 분석)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.857-866
    • /
    • 2020
  • 'Movement' is an expanded concept of 'place' where people act, interact with one another and achieve a specific purpose at every moment. Wheelchairs, as a mobility aid, have a profound impact on improving the quality of physical and psychological well-being for the mobility disadvantaged groups who have mobility difficulties. Such mobility aids were developed mainly for outdoor activities, but in recent years, mobility aids for indoor spaces, the main living environment, are also being developed. Because indoor mobility aids generally move short distances repeatedly, this study examined the characteristics of lithium-ion batteries in short-distance driving of battery-powered wheelchairs and compared them with the characteristics of lithium-ion batteries in continuous driving. The result showed that the driving time for short-distance driving was 2.8% shorter than that of continuous driving. The current supplied to the motor was 15.4% higher for short-distance driving than that of continuous driving.

A study on bio-signal process for prosthesis arm control (인공의수의 능동 제어를 위한 생체 신호 처리에 관한 연구)

  • Ahn, Young-Myung;Yoo, Jae-Myung
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.28-36
    • /
    • 2006
  • In this paper, an algorithm to classify the 4 motions of arm and a control system to position control the prosthesis are studied. To classify the 4 motions, we use flex sensors which is electrical resistance type sensor that can measure warp of muscle. The flex sensors are attached to the biceps brchii muscle and coracobrachialis muscle and the sensor signals are passed the sensing system. 4 motion of the forearm - flexion and extension, the pronation and supination are classified from this. Also position of forearm is measured from the classified signals. Finally, A two D.O.F prosthesis arm with RC servo-motor is designed to verify the validity of the algorithm. At this time, fuzzy controller is used to reduce the position error by rotary inertia and noise. From the experiment, the position error had occurred within about 5 degree.