• 제목/요약/키워드: Robot Manipulators

검색결과 499건 처리시간 0.028초

고온 환경 단조공정 자동화를 위한 수직다관절 로봇의 실시간 작업경로 제어에 관한 연구 (A Study on Real Time Working Path Control of Vertical Articulated Robot for Forging Process Automation in High Temperature Environments)

  • 조상영;김민성;도기훈;한성현;하언태;심현섭;임창식
    • 한국산업융합학회 논문집
    • /
    • 제20권1호
    • /
    • pp.34-48
    • /
    • 2017
  • This study proposes a new approach to control a trajectory control of vertical type articulated robot arm with six revolution joints by computed torque method for manufacturing process automation. The proposed control scheme takes advantage of the properties of the fuzzy controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator for forging manufacturing process automation. The results is illustrated that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. This study is included with an analytical methodology of inverse kinematic computation for 6 DOF manipulators. And an intelligent PID based on feed forward fuzzy control structure is applied to control the working path control with disturbances caused by uncertainty parameters of the manipulator dynamic model. Lastly, the validity of proposed is verified by simulations and experiments.

물체의 효율적인 이송을 위한 양팔 로봇의 최적 자세 (Optimization of Dual-arm Configurations for Efficient Handling of Objects)

  • 박치성;하현욱;손준배;이장명
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.130-140
    • /
    • 2011
  • This paper proposes an optimal posture for the task-oriented movement of dual arm manipulator. A stability criterion function which consists of three kinds of feature-representative parameters has been utilized to define the optimal posture. The first parameter is the force which is applied to the object. The torque of each joint and position of arm are attained from the current sensor and encoder, respectively. From these two data, the applied force to an object is estimated using sum of vectors of the joint torques estimated from the measured current. In order to investigate the robustness of each posture, the variation of the end-effector from the encoder information has been utilized as the second parameter. And for the last parameter for the optimality, the total energy consumption has been used. The total consuming energy of each posture can be computed from the current information and the battery voltage. The proposed robot structure consists of a mobile inverted pendulum and dual manipulators. In order to define the optimal posture for the each object, external disturbances are applied to the mobile inverted pendulum robot and the first and second parameters are investigated to find the optimal posture among the pre-selected most representative postures. Finally, the proposed optimal posture has been verified by the proposed stability criterion function which consists of total force to the object, the fluctuation of the end-effector position, and total energy consumption. The effectiveness of the proposed algorithms has been verified and demonstrated through the practical simulations and real experiments.

모바일 로봇을 위한 카메라 탑재 매니퓰레이터 (Manipulator with Camera for Mobile Robots)

  • 이준우;조경근;조훈희;정성균;봉재환
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.507-514
    • /
    • 2022
  • 가정에서 사람을 보조하기 위해 이동과 작업이 모두 가능한 모바일 매니퓰레이터의 필요성이 커지고 있다. 본 논문에서는 크기가 작고 낮은 가격으로 구성할 수 있는 모바일 매니퓰레이터를 개발하기 위해 모바일 로봇에 탑재할 수 있는 소형 매니퓰레이터 시스템을 개발하였다. 개발한 매니퓰레이터는 4자유도를 가지며, 끝단에 그리퍼와 카메라를 부착하여 물체의 인식과 인식한 물체에 대한 작업 수행이 가능하다. 개발한 매니퓰레이터는 수직 방향의 선형 이동이 가능하여 상대적으로 높이 위치한 사람의 손에 물건을 전달하거나 협업을 수행하는 데 유리하다. 개발한 매니퓰레이터의 4자유도 동작을 위한 4개의 액츄에이터를 매니퓰레이터의 베이스에 가깝게 배치하고 매니퓰레이터의 회전 관성을 줄임으로써 매니퓰레이터의 작업 중 안정성을 높이고 모바일 매니퓰레이터의 전복 위험을 낮추었다. 개발한 매니퓰레이터의 끝단에 위치한 카메라에서 RGB 영상을 획득하고 영상처리를 통해 물체를 인식하여 목표한 위치로 옮기는 픽 앤 플레이스 동작을 시험하였으며 로봇의 작업영역(workspace) 내에서 성공적으로 동작함을 확인하였다.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

부정맥 시술을 위한 마스터-슬레이브 원격제어·로봇 시스템 개발 (Development of Master-Slave Type Tele-Operation Control Robotic System for Arrhythmia Ablation)

  • 문영진;박상훈;후젠카이;최재순
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.585-589
    • /
    • 2016
  • Recently, the robotic assist system for cardiovascular intervention gets continuously growing interest. The robotic cardiovascular intervention systems are largely two folds, systems for cardiac ablation procedure assist and systems for vascular intervention assist. For the systems, the clinician controls the catheter inserted through blood vessel to the heart via a master console or master manipulator. Most of the current master manipulators have structure of joystick-like pivoting 2 degree of freedom (DOF) handle in the core, which is used in parallel with other sliding switches and input devices. It however is desirable to have customized and optimized design manipulator that can provide clinician with intuitive control of the catheter motion fully utilizing the advantage of the use of robotic structure. A 6 DOF kinematic mechanism that can capture the motion control intention of the clinician in translational 3 DOF and rotational 3 DOF is proposed in this paper. Also, a master-slave motion relationship specially designed for the cardiac catheter manipulation motion is proposed and implemented in an experimental prototype. Design revision for implementation of more efficient motion and experiment in combination with an experimental slave robot system for catheter manipulation are underway.

Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_{\infty}$ Framework

  • Choi, Jong-Hwan;Kim, Seung-Soo;Cho, Hyun-Cheol;Ahn, Tae-Kyu;Duoc, Buiquang;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.552-557
    • /
    • 2004
  • This paper presents a disturbance observer based on an $H_{\infty}$ controller synthesis for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, the hydraulic excavator has more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_{\infty}$ frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

  • PDF

유전자 알고리즘으로 조정된 퍼지 로직 제어기를 이용한 평면 여자유도 매니퓰레이터의 토크 최적화에 관한 연구 (A Study on Torque Optimization of Planar Redundant Manipulator using A GA-Tuned Fuzzy Logic Controller)

  • 유봉수;김성곤;조중선
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.642-648
    • /
    • 2008
  • 여자유도 매니퓰레이터의 동적 제어는 관절에 가해지는 토크를 최소화하는 목적으로 많은 연구가 이루어져 왔다. 그러나 기존의 국소 토크 최적화의 동적 제어 방법은 드라이버로 구현하기 힘든 토크가 요구된다. 본 논문에서는 그러한 큰 토크 요구를 상당히 개선시킨 새로운 제어 알고리즘을 제안한다. 이 알고리즘은 기존의 국소 토크 최소화 알고리즘에 퍼지 로직과 유전자 알고리즘을 적용시킨 것이다. 제안된 알고리즘은 3자유도 평면 여자유도 로봇에 적용하였으며, 시뮬레이션 결과를 통하여 제안된 알고리즘의 타당성을 확인하였다.

수직다관절 매니퓰레이터에 대한 비선형 되먹임제어의 응용 (Application of Nonlinear Feedback Control to an Articulated Manipulator)

  • Y.S. Baek;C.I. Yang;H.S. Aum
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.104-114
    • /
    • 1995
  • Mathematical models of industrial robots or manipulators are composed of highly nonlinear equations with nonlinear couplings between the variables of motions. These nonlin- earities were not considered important in the first stage that the working speed of the manipulator was not so fast, but the effect of nonlinear forces has become serious, as the working speed has been increased. So more improvement of performance cannot be expected by the control of manipulator using approximate linearization. As an approach for solving these problems, there is a method that eliminates nonlinear theory, which makes possible cecoupling of coupling terms and arbitrary arranging of poles is briefly introduced in this study. When the theory is applied to design the control law, its feasibility is examined whether the reasonable control results are obtained by simulating position, velocity, torque and tracing trajectory. The relations between the coefficients of the linearized differential equations and the maximum error and torque for the prescribed trajectory are also examined. Finally, the method for selecting the values for getting the most rapid and precise response within maximum torque of each drive is suggested in the choice of coefficients of characteristic equations which are obtained as a result of the control.

  • PDF

전자 튜너 조정을 위한 위치와 방향 인식 (Position and Orientation Recognition for Adjusting Electronic Tuners)

  • 양재호;공영준;이문규
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.39-49
    • /
    • 1999
  • This paper describes the development of a vision-aided position and orientation recognition system for automatically adjusting electronic tuners which control the waveform by rotating variable resisters. The position and orientation recognition system estimates the center and the angle of the tuner grooves so that the main controller may correct the difference from the ideal position and thereby manipulate the variable resisters automatically. In this paper a robust algorithm is suggested which estimates the center and the angle of the tuner grooves fast and precisly from the source image with lighting variance and video noise. In the algorithm morphological filtering, 8-chain coding, and invariant moments are sequentially used to figure out image segments concerned. The performance of the proposed system was evaluated using a set of real specimens. The results indicate the system works well enough to be used practically in real manufacturing lines. If the system adopts a high speed frame grabber which enables real time image processing, it can also be applied to positioning of robot manipulators as well as automated PCB adjusters.

  • PDF

퍼지 추론 시스템 기반의 다중 신경회로망 제어기를 이용한 초음파 모터의 위치제어 (Fuzzy Inference System Based Multiple Neural Network Controllers for Position Control of Ultrasonic Motor)

  • 최재원;민병우;박운식
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.209-218
    • /
    • 2001
  • Ultrasonic motors are newly developed motors which are expected to be useful as actuators in many practical systems such as robot arms or manipulators because of several advantages against the electromagnetic motors. However, the precise control of the ultrasonic motor is generally difficult due to the absence of appropriate and rigorous mathematical model. Furthermore, owing to heavy nonlinearity, the position control of a pendulum system driven by the ultrasonic motor has a problem that control method using multiple neural network controllers based on a fuzzy inference system that can determine the initial position of the pendulum in the beginning of control operation. In addition, and appropriate neural network controller that has been learned to operate well at the corresponding initial position is adopted by switching schemes. The effectiveness of the proposed method was verified and evaluated from real experiments.

  • PDF