• Title/Summary/Keyword: Robot Interface

Search Result 444, Processing Time 0.028 seconds

Study on Hybrid Control for Motion Control of Mobile Robot Systems (이동로봇의 동작 제어를 위한 하이브리드 시스템 제어에 관한 연구)

  • Lim, Mee-Seub;Lim, Jin-Mo;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2348-2350
    • /
    • 1998
  • The hybrid control system for a wheeled mobile robot with nonholonomic constraints to perform a cluttered environment maneuver is proposed. The proposed hybrid control system consists of a continuous state system for the trajectory control, a discrete state system for the motion and orientation control, and an interface control system for the interaction process between the continuous dynamics and the discrete dynamics The continuous control systems are modeled by the switched systems with the control of driving wheels, and the digital automata for motion control are modeled and implemented by the abstracted motion of mobile robot. The motion control tasks such as path generation, motion planning, and trajectory control for a cluttered environment are investigated as the applications by simulation studies.

  • PDF

Biosign Recognition based on the Soft Computing Techniques with application to a Rehab -type Robot

  • Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.29.2-29
    • /
    • 2001
  • For the design of human-centered systems in which a human and machine such as a robot form a human-in system, human-friendly interaction/interface is essential. Human-friendly interaction is possible when the system is capable of recognizing human biosigns such as5 EMG Signal, hand gesture and facial expressions so the some humanintention and/or emotion can be inferred and is used as a proper feedback signal. In the talk, we report our experiences of applying the Soft computing techniques including Fuzzy, ANN, GA and rho rough set theory for efficiently recognizing various biosigns and for effective inference. More specifically, we first observe characteristics of various forms of biosigns and propose a new way of extracting feature set for such signals. Then we show a standardized procedure of getting an inferred intention or emotion from the signals. Finally, we present examples of application for our model of rehabilitation robot named.

  • PDF

Development of autonomous driving route guidance robot using SLAM technology (SLAM 기술을 이용한 자율주행 경로 안내 로봇 개발)

  • Seung, Sang-jun;Lee, Ji-hwan;Jo, Min-je;Shin, Chun-ho;Kim, Do-yeon;Park, Yang-woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.153-154
    • /
    • 2021
  • 본 논문에서는 ROS(Robot Operating System)를 기반으로 한 로봇(Robot)에 LiDAR 센서를 설치하여 SLAM(Simultaneous Localization and Mapping) 기술인 동시적 위치 추적 지도 작성 기법을 이용하여 실내 맵 정보를 습득하고, 이를 기반으로 장애물과 건물 실내를 안전하고 정확하게 이동할 수 있도록 하였다. 또한 로봇에 자바에서 제공하는 개발 툴킷 Swing 및 AWT 라이브러리를 이용하여 GUI(Graphical User Interface)를 구현하였고 터치스크린을 장착하여 사용자가 원하는 제품을 선택하고 선택한 제품의 목적지를 습득한 맵을 토대로 좌표 값을 설정하여 ROS에서 지원하는 이동 프로세스를 실행시켜 목적지까지 경로를 설정하고 자율 주행하게 된다.

  • PDF

Development of the MVS (Muscle Volume Sensor) for Human-Machine Interface (인간-기계 인터페이스를 위한 근 부피 센서 개발)

  • Lim, Dong Hwan;Lee, Hee Don;Kim, Wan Soo;Han, Jung Soo;Han, Chang Soo;An, Jae Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.870-877
    • /
    • 2013
  • There has been much recent research interest in developing numerous kinds of human-machine interface. This field currently requires more accurate and reliable sensing systems to detect the intended human motion. Most conventional human-machine interface use electromyography (EMG) sensors to detect the intended motion. However, EMG sensors have a number of disadvantages and, as a consequence, the human-machine interface is difficult to use. This study describes a muscle volume sensor (MVS) that has been developed to measure variation in the outline of a muscle, for use as a human-machine interface. We developed an algorithm to calibrate the system, and the feasibility of using MVS for detecting muscular activity was demonstrated experimentally. We evaluated the performance of the MVS via isotonic contraction using the KIN-COM$^{(R)}$ equipment at torques of 5, 10, and 15 Nm.

Development of a Personal Robot Based on Modularization (모듈화 개념의 퍼스널 로봇 플랫폼 개발)

  • 최무성;양광웅;원대희;박상덕;김홍석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.742-745
    • /
    • 2004
  • If a personal robot is popularized like a personal computer in the future, many kinds of robots will appear and the number of manufacturers will increase as a matter of course. In such circumstances, it can be inefficient, in case each manufacturer makes a whole platform individually. The solutions for this problem are to modularize a robot component (hardware and software) functionally and to standardize each module. Each module is developed and sold by each special maker and a consumer purchases desired modules and integrates them. The standardization of a module includes the unification of electrical and mechanical interface. In this paper, the standard interfaces of modules are proposed and CMR(Component Modularized Robot)-P2 made with the modules(brain, sensor, mobile, arm) is introduced. In order to simplify and to make the modules light, a frame is used for supporting a robot and communication/power lines. The name of a method and the way to use that are defined dependently on the standard interfaces in order to use a module in other modules. Each module consists of a distributed object and that can be implemented in the random language and platform. The sensor, mobile and arm modules are developed on Pentium or ARM CPU and embedded Linux OS using the C programming language. The brain module is developed on Pentium CPU and Windows OS using the C, C++ and RPL(Robot Programming Language). Also tasks like pass planning, localization, moving, object perception and face perception are developed. In our test, modules got into gear and CMR-P2 executed various scenarios like guidance, errand and guarding completely.

  • PDF

Development of an Intrinsic Continuum Robot and Attitude Estimation of Its End-effector Based on a Kalman Filter (내부형 연속체로봇 개발 및 칼만필터를 이용한 말단장치 자세추정)

  • Kang, Chang Hyun;Bae, Ji Hwan;Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.361-367
    • /
    • 2015
  • This paper presents the design concept of an intrinsic continuum robot for safe man-machine interface and characteristic behaviors of its end-effector based on real experiments. Since pneumatic artificial muscles having similar antagonistic actuation to human muscles are used for main backbones of the proposed robot as well as in the role of the actuating devices, variable stiffness of robotic joints can be available in the actual environment. In order to solve the inherent shortcoming of an intrinsic continuum robot due to bending motion of the backbone materials, a Kalman filter scheme based on a triaxial accelerometer and a triaxial gyroscope was proposed to conduct an attitude estimation of the end-effector of the robot. The experimental results verified that the proposed method was effective in estimating the attitude of the end-effector of the intrinsic continuum robot.

User-Oriented Controller Design for Multi-Axis Manipulators (다관절 머니퓰레이터의 사용자 중심 제어기 설계)

  • Son, HeonSuk;Kang, DaeHoon;Lee, JangMyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • This paper proposes a PC-based open architecture controller for a multi-axis robotic manipulator. The designed controller can be applied for various multi-axes robotic manipulators since the motion controller is implemented on a PC with its peripheral devices. The accuracy of the controller based on the computed torque method has been measured with the dynamic model of manipulator. Since the controller is implemented in the PC-based architecture, it is free from the user circumstances and the operating environment. Dynamics of the manipulator have been compensated by the feed forward path in the inner loop and the resulting linear outer loop has been controlled by PD algorithm. Using the specialized language, it can be more efficient in programming and in driving of the multi-axis robot. Unlike the conventional controller that is used to control only a specific robot, this controller can be easily changed for various types of robots. This paper proposes a PC-based controller that has a simple architecture with its simple interface circuits than general commercial controllers. The maintenance and the performance of the controller can be easily improved for a specific robot. In fact, using a Samsung multi-axis robot, AT1, the controller performance and convenience of the PC-based controller have been verified by comparing to the commercial one.

  • PDF

A Study on the Development of Medical Service Robot (의료용 서비스 로봇 개발에 관한 연구)

  • Kang, Sung-In;Park, Yoon-A;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1245-1250
    • /
    • 2011
  • In this paper, we designed efficient reception system using service robot based on the RFID(Radio Frequency Identification) and HL7(Health Level 7) Protocol. The proposed system offer a paramedic the medical information of the patient, and the patients can receive on a much simpler scale than previously through stable and quick information exchange by RFID and HL7. In addition, We considered environment of medical treatment and designed and implemented standard HL7 message structure. This system was implemented service robots to reception of medical treatment. Furthermore, we have plan to develop bio-sensor which can measure blood pressure, body temperature, etc and interface with robot system by HL7.