• Title/Summary/Keyword: Robot Interaction

Search Result 482, Processing Time 0.031 seconds

The effect of trust repair behavior on human-robot interaction (로봇의 신뢰회복 행동이 인간-로봇 상호작용에 미치는 영향)

  • Hoyoung, Maeng;Whani, Kim;Jaeun, Park;Sowon, Hahn
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.4
    • /
    • pp.205-228
    • /
    • 2022
  • This study aimed to confirm the effect of social and relational behavior types of robots on human cognition in human-robot interaction. In the experiment, the participants evaluated trust in robots by watching a video on the robot Nao interacting with a human, in which the robot made an error and then made an effort to restore trust. The trust recovery behavior was set as three conditions: an internal attribution in which the robot acknowledges and apologizes for an error, a condition in which the robot apologizes for an error but attributes it externally, and a non-action condition in which the robot denies the error itself and does not take any action for the error. As the result, in all three cases, the error was perceived as less serious when the robot apologized than when it did not, and the ability of the robot was also highly evaluated. These results provide evidence that human attitudes towards robots can respond sensitively depending on the robot's behavior and how they overcome errors, suggesting that human perception towards robots can change. In particular, the fact that robots are more trustworthy when they acknowledge and apologize for their own errors shows that robots can promote positive human-robot interactions through human-like social and polite behavior.

The Usage of Anthropomorphic Forms in Robot Design and the Method of Evaluation (로봇 디자인에서 의인화 기법의 활용 평가 방법에 관한 연구)

  • Choi, Jeong-Gun;Kim, Myung-Suk
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.126-130
    • /
    • 2008
  • It takes only few seconds to find an artifact that has anthropomorphic form. There are numerous examples illustrating human's shape in daily life products. Usage of anthropomorphic form has been a basic design strategy especially when industrial designers design intelligent service robots because most of robot features were basically from human. Therefore, it's necessary to use anthropomorphic form not only in appearance design but also in interaction design. To use anthropomorphic form effectively, it needs to measure how much the artifact is similar to human, and then to evaluate whether the usage of anthropomorphic form fits to the artifact. This study's goal was to set up an evaluation standard for anthropomorphism for robot design. We suggest that there are three criteria for the evaluation standard. Those are 'anthropomorphic form in appearance', 'anthropomorphic form in Human-Robot Interaction', and 'accordance in two former criteria'. We expect that when designers put an evaluation step of anthropomophism in their design process of robots, robots might become more preferred by users, and easier to understand how to interact with.

  • PDF

Implementation of Home Service Robot System consisting of Object Oriented Slave Robots (객체 지향적 슬레이브 로봇들로 구성된 홈서비스 로봇 시스템의 구현)

  • Ko, Chang-Gun;Ko, Dae-Gun;Kwan, Hye-Jin;Park, Jung-Il;Lee, Suk-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.337-339
    • /
    • 2007
  • This paper proposes a new paradigm for cooperation of multi-robot system for home service. For localization of each robot. the master robot collects information of location of each robot based on communication of RFID tag on the floor and RFID reader attached on the bottom of the robot. The Master robot communicates with slave robots via wireless LAN to check the motion of robots and command to them based on the information from slave robots. The operator may send command to slave robots based on the HRI(Human-Robot Interaction) screened on masted robot using information from slave robots. The cooperation of multiple robots will enhance the performance comparing with single robot.

  • PDF

A Human Robot Interactive System 'RoJi '

  • Yoon, Joongsun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1900-1908
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of human and robots is explored. Based on interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly through obstacles and other hazards faced by blind pedestrians. Robotic aids, such as robotic canes, require cooperation between human and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction between humans and robots, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

The Interaction Design of Teaching Assistant Robots based on Reinforcement Theory - With an Emphasis on the Measurement of the Subjects' Impressions and Preferences - (강화 이론에 근거한 교사 보조 로봇 인터랙션 디자인에 관한 연구 - 로봇에 대한 인상과 선호도 측정을 중심으로 -)

  • Kwak, So-Nya S.;Lee, Dong-Kyu;Lee, Min-Gu;Han, Jeong-Hye;Kim, Myung-Suk
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.97-106
    • /
    • 2007
  • This study examines whether the reinforcement theory could be effectively applied to teaching assistant robots between a robot and a student in the same way as it is applied to teaching methods between a teacher and a student. Participants interacted with a teaching assistant robot in a 3 (types of robots: positive reinforcement vs. negative reinforcement vs. both reinforcements) by 2 (types of participants: honor students vs. backward students), within-subject experiment. Three different types of robots, such as 'Ching-chan-ee' which gives 'positive reinforcement', 'Um-bul-ee' which gives 'negative reinforcement', and 'Sang-bul-ee' which gives both 'positive and negative reinforcement' were designed based on the reinforcement theory and the token reinforcement system. Subjective impressions and preferences were measured according to the types of robots and the types of participants. Participants preferred the positive reinforcement robot most, and the negative reinforcement robot least. Regarding the number of stimulus, in case of the negative reinforcement robot for honor students, the less the stimulus is, the more positive the impressions toward the robot are. The findings demonstrate that the reinforcement interaction is important and effective factor which determines children's preferences and impressions for teaching assistant robots. The results of this study can be implicated as an effective guideline to interaction design of teaching assistant robots.

  • PDF

Face Recognition Using Tensor Subspace Analysis in Robot Environments (로봇 환경에서 텐서 부공간 분석기법을 이용한 얼굴인식)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.300-307
    • /
    • 2008
  • This paper is concerned with face recognition for human-robot interaction (HRI) in robot environments. For this purpose, we use Tensor Subspace Analysis (TSA) to recognize the user's face through robot camera when robot performs various services in home environments. Thus, the spatial correlation between the pixels in an image can be naturally characterized by TSA. Here we utilizes face database collected in u-robot test bed environments in ETRI. The presented method can be used as a core technique in conjunction with HRI that can naturally interact between human and robots in home robot applications. The experimental results on face database revealed that the presented method showed a good performance in comparison with the well-known methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in distant-varying environments.

  • PDF

Moving object detection for biped walking robot flatfrom (이족로봇 플랫폼을 위한 동체탐지)

  • Kang, Tae-Koo;Hwang, Sang-Hyun;Kim, Dong-Won;Park, Gui-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.570-572
    • /
    • 2006
  • This paper discusses the method of moving object detection for biped robot walking. Most researches on vision based object detection have mostly focused on fixed camera based algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since hired walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, method for moving object detection has been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. But these methods are not suitable to biped walking robot. So, we suggest the advanced method which is suitable to biped walking robot platform. For carrying out certain tasks, an object detecting system using modified optical flow algorithm by wireless vision camera is implemented in a biped walking robot.

  • PDF

Stability of the Robot Compliant Motion control - Part 1 : Theory

  • Kim, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.973-980
    • /
    • 1988
  • This two-part paper presents a control method that allows for stable interaction of a robot manipulator with the environment. In part 1, we focus on the input ouput relationships (unstructured modeling) of the robot and environment dynamics. This analysis leads to a general condition for stability of the robot and environment taken as a whole. This stability condition, for stable maneuver, prescribes a finite sensitivity for robot and environment where sensitivity of the robot(or the environment) is defined as a mapping forces into displacement. According to this stability condition, smaller sensitivity either in robot or in environment leads to narrower stability range. In the limit, when both systems have zero sensitivity, stability cannot be guaranteed. These models do not have any particular structure, yet they can model a wide variety of industrial and research robot manipulators and environment dynamic behavior. Although this approach of modeling may not lead to any design procedure, it will allow us to understand the fundamental issues in stability when a robot interacts with an environment.

  • PDF

Stability of the Robot Compliant Motion Control, Part 1 : Theory (로보트의 Compliance 제어에서의 안정성:이론)

  • Sung-Kwun Kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.941-949
    • /
    • 1989
  • This two-part paper presents a control method that allows for stable interaction of a robot manipulator with environment. In part 1, we focus on the input output relationships (unstructured modeling) of the robot and environment dynamics. This analysis leads to a general condition for stability of the robot and environment taken as a whole. This stability condition, for stable maneuver, prescribes a finite sensitivity for robot and environment where sensitivity of the robot (or the environment) is defined as a mapping forces into displacement. According to this stability condition, smaller sensitivity either in robot or in environment leads to narrower stability range. In the limit, when both systems have zero sensitivity, stability cannot be guaranteed. These models do not have any particular structure, yet they can model a wide variety of industrial and research robot manipulators and environment dynamic behavior. Although this approach of modeling may not lead to and design procedure, it will allow us to understand the fundamental issues in stability when a robot interacts with an environment.