• 제목/요약/키워드: Robot Controller

검색결과 1,554건 처리시간 0.029초

경사로에서 세그웨이 로봇의 주행 속도를 통한 경사각 추정 (Estimate the Inclination Angle using Traveling Speed of Segway Robot on the Slope)

  • 정희인;이상용;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1164-1169
    • /
    • 2014
  • This paper proposes an angle estimation of Segway robot for the slop driving. Most of Segway robot was controlled by pose control of keeping robot's balance and motor control of driving. In motor control, we analyzed Segway robot kinetically and estimated an angle of inclination using the velocity that depends on input force. In pose control, also, we used PD controller and evaluated a stability of controller through MATLAB simulation. Assuming the robot keeps its balance stably using controller, we could linearize dynamics. We could obtain the result through the experiment which estimates an angle using the velocity of Segway robot that is derived from linearized dynamics.

초음파센서와 RFID 시스템을 이용한 이동로봇의 맵 빌딩에 관한 연구 (A Study on Map Building of Mobile Robot Using RFID Technology and Ultrasonic Sensor)

  • 이도경;임재성;김상봉
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.239-244
    • /
    • 2010
  • This paper is to present map building of mobile robot using RFID (Radio Frequency Identification) technology and ultrasonic sensor. For mobile robot to perform map building, the mobile robot needs its localization and accurate driving in space. In this reason, firstly, kinematic modeling of mobile robot under non-holonomic constrains is introduced. Secondly, based on this modeling, a tracking controller is designed for tracking a given path based on backstepping method using Lyapunov function. The Lyapunov function is also introduced for proving the stability of the designed tracking controller. Thirdly, 2D map building is performed by RFID system, mobile robot system and ultrasonic sensors. The RFID mobile robot system is composed of DC motor, encoder, ultra sonic sensor, digital compass, RFID receiver and RFID antenna. Finally, the path tracking simulation results and map building experimental results are presented to show the effectiveness of the designed controller.

지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어 (Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface)

  • 고재원;임동철
    • 전기학회논문지P
    • /
    • 제56권4호
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.

회전 관절형 로봇의 강인제어 (Robot Control of a Revolute Joint Robot)

  • 이수한;김태균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.265-270
    • /
    • 2001
  • In this paper, a robust controller is proposed to control a robot manipulator which is governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require the dynamic model or parameter values of a robot manipulator. It, however, requires uncertainty bounds which are derived by using properties of revolute joint robot dynamics. The stability of the robot with the controller is proved by using Lyapunov's direct method. The results of computer simulations also show that the robot system is stable, and has excellent trajectory tracking performance.

  • PDF

이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기 (A Learning Controller for Repetitive Gate Control of Biped Walking Robot)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

인터넷을 이용한 원격 로봇 제어기의 개발 (The development of the remote robot controller using the internet)

  • 임재환;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.776-778
    • /
    • 1997
  • We propose a remote controller for a SCARA typed direct drive manipulator with two degrees-of-freedom(DOF). A remote controller system for SCARA robot of DDA is designed using a 2 DSP (TMS320c31) board and Winsock(Internet program class library supplied by Microsoft). The design objective of the system is to implement real time dynamic control algorithms which have been tested only by simulations so far and remote control regardless of the distance between user and robot. Because this system runs on Win95, we developed a VxD program to communicate with DSP controller.

  • PDF

바퀴구동 이동로봇의 경로추적 직접적응제어 (Direct Adaptive Tracking Control For a Wheeled Mobile Robot)

  • 이용근
    • 전기학회논문지P
    • /
    • 제53권4호
    • /
    • pp.201-204
    • /
    • 2004
  • In this paper, a direct adaptive tracking controller based Lyapunov method is designed for a wheeled mobile robots. A wheeled mobile robots have three degrees of freedom and two control variables. Therefore, it is difficult to control a mobile robot using the general linear control. We introduce two kinds of Lyapunov function for the design of the controller and verify the controller. A mobile robots using the designed adaptive direct tracking controller is well-behaved and is easily implemented.

구륜 이동 로봇의 경로 추적을 위한 퍼지-신경망 제어기 설계 (A Design of Fuzzy-Neural Network Controller of Wheeled-Mobile Robot for Path-Tracking)

  • 박종국;김상원
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1241-1248
    • /
    • 2004
  • A controller of wheeled mobile robot(WMR) based on Lyapunov theory is designed and a Fuzzy-Neural Network algorithm is applied to this system to adjust controller gain. In conventional controller of WMR that adopts fixed controller gain, controller can not pursuit trajectory perfectly when initial condition of system is changed. Moreover, acquisition of optimal value of controller gain due to variation of initial condition is not easy because it can be get through lots of try and error process. To solve such problem, a Fuzzy-Neural Network algorithm is proposed. The Fuzzy logic adjusts gains to act up to position error and position error rate. And, the Neural Network algorithm optimizes gains according to initial position and initial direction. Computer simulation shows that the proposed Fuzzy-Neural Network controller is effective.

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 로봇 제어기 설계 (Prefilter Type Velocity Compensating Robot Controller Design using Modified Chaotic Neural Networks)

  • 홍수동;최운하;김상희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권4호
    • /
    • pp.184-191
    • /
    • 2001
  • This paper proposes a prefilter type velocity compensating control system using modified chaotic neural networks for the trajectory control of robotic manipulator. Since the structure of modified chaotic neural networks(MCNN) and neurons have highly nonlinear dynamic characteristics, MCNN can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis robot manipulator is designed by MCNN. The MCNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on-line learning and the performance is excellent. The MCNN controller showed much better control performance and shorter calculation time compared to the RNN controller, Another advantage of the proposed controller could by attached to conventional robot controller without hardware changes.

  • PDF

Hyundai 8608 Robot 제어기 파라미터 튜닝 방안 연구 (A Study on the Control Parameter Tuning Method of the Hyundai 8608 Robot)

  • 김미경;윤천석;강희준;서영수;노영식;손홍래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1836-1840
    • /
    • 2005
  • This work proposes a controller tuning method of a Hyundai 8608 robot in order to improve its performance. For this, we analyzed the control structure of the robot, and the functions of all the adjustable parameters in the robot controller with a reference 'NACHI Technical Report'. Through the analysis, we found out that 3 important parameters(VRRL, VRF, VRGIN) act like a conventional PID gains and other parameters are closely related to these 3 parameters. Conclusively, parameter tuning of these 3 parameters is enough in most cases of applications with other parameters fixed. The conventional PID tuning is performed to each joint of the test robot with Robot Performance Evaluation System(shown in our companion paper) so that the acceptable gain ranges for each joint are determined and then the robot performance tests are repeatedly done with the combination of the acceptable gains. Finally, the best combination is selected for its best performance. For the effectiveness of the proposed method, it was implemented on a Hyundai 8608 robot and its results are compared with the results of NACHI's Semi-Auto Tuning Method and the results which are done by a tuning expert with his eyes.

  • PDF