• Title/Summary/Keyword: Robot Controller

Search Result 1,554, Processing Time 0.025 seconds

A Study of Position Control Performance Enhancement in a Real-Time OS Based Laparoscopic Surgery Robot Using Intelligent Fuzzy PID Control Algorithm (Intelligent Fuzzy PID 제어 알고리즘을 이용한 실시간 OS 기반 복강경 수술 로봇의 위치 제어 성능 강화에 관한 연구)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Lee, Duck-Hee;Kim, Yun-Ho;Choi, Jae-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.518-526
    • /
    • 2008
  • The fuzzy self-tuning PID controller is a PID controller with a fuzzy logic mechanism for tuning its gains on-line. In this structure, the proportional, integral and derivative gains are tuned on-line with respect to the change of the output of system under control. This paper deals with two types of fuzzy self-tuning PID controllers, rule-based fuzzy PID controller and learning fuzzy PID controller. As a medical application of fuzzy PID controller, the proposed controllers were implemented and evaluated in a laparoscopic surgery robot system. The proposed fuzzy PID structures maintain similar performance as conventional PID controller, and enhance the position tracking performance over wide range of varying input. For precise approximation, the fuzzy PID controller was realized using the linear reasoning method, a type of product-sum-gravity method. The proposed controllers were compared with conventional PID controller without fuzzy gain tuning and was proved to have better performance in the experiment.

Running Control of Quadruped Robot Based on the Global State and Central Pattern

  • Kim, Chan-Ki;Youm, Young-Il;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.308-313
    • /
    • 2005
  • For a real-time quadruped robot running control, there are many important objectives to consider. In this paper, the running control architecture based on global states, which describe the cyclic target motion, and central pattern is proposed. The main goal of the controller is how the robot can have robustness to an unpredictable environment with reducing calculation burden to generate control inputs. Additional goal is construction of a single framework controller to avoid discontinuities during transition between multi-framework controllers and of a training-free controller. The global state dependent neuron network induces adaptation ability to an environment and makes the training-free controller. The central pattern based approach makes the controller have a single framework, and calculation burden is resolved by extracting dynamic equations from the control loop. In our approach, the model of the quadruped robot is designed using anatomical information of a cat, and simulated in 3D dynamic environment. The simulation results show the proposed single framework controller is robustly performed in an unpredictable sloped terrain without training.

  • PDF

Implementation of Balancing Control System for Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 밸런싱 제어시스템 구현)

  • An, Tae-Hee;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.432-439
    • /
    • 2012
  • In this paper, instead of the conventional PD controller for balancing control of two wheeled inverted pendulum robots, an improved PD controller using the neural network is proposed and implemented for performance verification. First, a two wheeled inverted pendulum robot system is constructed for experiment. Next proper gains of the conventional PD controller according to users' weights are obtained for balancing the robot by use of the trial and error method. The PD gains based on the trial and error method are generalized through the neural network. Experiment results show that the PD controller based on the neural network has better performance than the conventional PD controller.

Implementation and Performance Evaluation of the Dual Controller System for Precision Control of Gripper (그리퍼 정밀 제어를 위한 이중 제어기 시스템의 구현 및 성능 평가)

  • Lee, Seung-Yong;Ham, Un-Hyong;Park, Young-Woo;Jung, Il-Kyun;Lim, Sun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2018
  • This paper proposes a Dual Controller System for Precision Control (DCSPC) for control of the gripper. The DCSPC consists of two subsystems, CDSP (Controller based DSP) and CARM (Controller based ARM processor). The CDSP is developed on a DSP processor and controls the gripping motor and LVDT. In particular, the CARM is implemented using Linux and ARM processor according to recent research related to open-source. The robot for high-precision assembly is divided into the robot control and the gripper control section and controls CARM and CDSP systems respectively. In this paper, we also proposed and measured the performance of communication API. As a result, it is expected to recognize improvements in communication between CARM and the robot controller, and will continue to conduct relevant research among other commercial robot controllers.

Controller Design of Two Wheeled Inverted Pendulum Type Mobile Robot Using Neural Network (신경회로망을 이용한 이륜 역진자형 이동로봇의 제어기 설계)

  • An, Tae-Hee;Kim, Yong-Baek;Kim, Young-Doo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.536-544
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum type robot is designed to have more stable balancing capability than conventional controllers. Traditional PID control structure is chosen for the two wheeled inverted pendulum type robot, and proper gains for the controller are obtained for specified user's weights using trial-and-error methods. Next a neural network is employed to generate PID controller gains for more stable control performance when the user's weight is arbitrarily selected. Through simulation studies we find that the designed controller using the neural network is superior to the conventional PID controller.

Fuzzy-PID controller for motion control of CFETR multi-functional maintenance platform

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Wu, Huapeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2251-2260
    • /
    • 2021
  • The motion control of the divertor maintenance system of the China Fusion Engineering Test Reactor (CFETR) was studied in this paper, in which CFETR Multi-Functional Maintenance Platform (MFMP) was simplified as a parallel robot for the convenience of theoretical analysis. In order to design the motion controller of parallel robot, the kinematics analysis of parallel robot was carried out. After that, the dynamic modeling of the hydraulic system was built. As the large variation of heavy payload on MFMP and highly nonlinearity of the system, A Fuzzy-PID controller was built for self-tuning PID controller parameters by using Fuzzy system to achieve better performance. In order to test the feasibility of the Fuzzy-PID controller, the simulation model of the system was built in Simulink. The results have showed that Fuzzy-PID controller can significantly reduce the angular error of the moving platform and provide the stable motion for transferring the divertor.

Development of a 4-DOF Industrial Robot System

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • In this work, a 4-DOF industrial robot system with three translational and one rotational motions which is widely used in palletizing applications is developed. In order for small robot manufacturing companies to develop their own robot systems for CNC machining and/or general automations, the analysis and design methods of a 4-DOF robot manipulator are presented and the development of a PC-based robot controller with EtherCAT are introduced. It is noted that the robot controller is developed by using Simulink Real-Time, which can provide an integrated environment of easier control algorithm development and data logging. Through position control and accuracy/repeatability measurement results, the developed robot prototype has comparable performances with commercial counterparts. In the future works, the advanced functions of industrial robots such as kinematic calibration, vibration suppression control, computed torque control, etc. will be investigated.

Tracking Control for Mobile Platform based on Dynamics (동역학을 기반으로 한 모바일플랫폼 궤적제어)

  • Lee, Min-Jung;Park, Jin-Hyun;Jin, Tae-Seok;Cha, Kyung-Hwan;Choi, Young-Kui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.201-204
    • /
    • 2008
  • The mobile robot is known as a nonlinear system with constraints. The general tracking controller for the mobile platform has been divided into the kinematic and the dynamic controller. The reason of dividing controller is the constraints. We can get some information through some numerical experiments. When the reference linear and angular velocity were given, the stability of mobile robot without the kinematic controller depend on the start point of reference cart. Therefore this paper composed of two controller for solving tracking problem. The main controller is the dynamic controller which used generally such as the PID controller. And this paper adopts the auxiliary controller in order to compensate the difference of initial point between the reference cart and a mobile robot. Finally, the numerical experiment is performed in order to show the validity of our method.

  • PDF

Servo control of mobile robot using vision system (비젼시스템을 이용한 이동로봇의 서보제어)

  • 백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.540-543
    • /
    • 1997
  • In this paper, a precise trajectory tracking method for mobile robot using a vision system is presented. In solving the problem of precise trajectory tracking, a hierarchical control structure is used which is composed of the path planer, vision system, and dynamic controller. When designing the dynamic controller, non-ideal conditions such as parameter variation, frictional force, and external disturbance are considered. The proposed controller can learn bounded control input for repetitive or periodic dynamics compensation which provides robust and adaptive learning capability. Moreover, the usage of vision system makes mobile robot compensate the cumulative location error which exists when relative sensor like encoder is used to locate the position of mobile robot. The effectiveness of the proposed control scheme is shown through computer simulation.

  • PDF

Hierarchical Fuzzy Logic Controller Design for Obstacle Avoidance of a Mobile Robot (이동로봇의 장애물 회피를 위한 계층적 퍼지 제어기 설계)

  • Kim, Ki-Woong;Lee, Suk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.319-322
    • /
    • 1995
  • This paper addresses that through the use of Fuzzy Logic Control, a reactiv behavior (e.g. avoiding obstacles on the way) are smoothly blended into one sequence of control action. In this classical problem, the aim is to guide a mobile robot along its path to avoid any static obstacles in front of it. This controller presented here uses three sub-controllers. This fuzzy controller was apply to a miniature mobile robot. This robot follows a left wall, maintining a minimum distance.

  • PDF