• Title/Summary/Keyword: Robot Control System

Search Result 2,879, Processing Time 0.028 seconds

Implementation of a Mobile Robot Control Platform using Real-Time Embedded Linux (실시간 임베디드 리눅스를 이용한 이동 로봇 플랫폼 구현)

  • Choi Byoung-Wook;Shin Eun-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.194-200
    • /
    • 2006
  • The SoC and digital technology development recently enabled the emergence of information devices and control devices because the SoC presents many advantages such like lower power consumption, greater reliability, and lower cost. However, it is nearly impossible to use the SoC without operating systems because the SoC is included with many peripherals and complex architecture. It is required to use embedded operating systems and real-time operating systems may be used as an embedded operating system. So far, real-time operating systems are widely used to implement a Real-Time system since it meets developer's requirements. However, real-time operating systems have disadvantages including a lack of standards, expensive development, and license. Embedded Linux is able to overcome their disadvantages. In this paper, the implementation of control system platform for a mobile robot using real-time Embedded Linux is described. As a control hardware system platform, XScale board is used. As the real-time Embedded Linux, RTAI is adopted which is open source and royalty free, and supports various architectures and real-time devices, such like real-time CAN and real-time COM. This paper shows the implementation of RTAI on XScale board that means the porting procedure. We also applied the control system platform to the mobile robot and compared the Real-Time serial driver with non real-time serial driver. Experimental results show that that using RTAI is useful to build real-time control system with powerful functionalities of Linux.

A Study on the Development of Robust control Algorithm for Stable Robot Locomotion (안정된 로봇걸음걸이를 위한 견실한 제어알고리즘 개발에 관한 연구)

  • Hwang, Won-Jun;Yoon, Dae-Sik;Koo, Young-Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.259-266
    • /
    • 2015
  • This study presents new scheme for various walking pattern of biped robot under the limitted enviroments. We show that the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multilayer backpropagation neural network identification is simulated to obtain a learning control solution of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The main advantage of our scheme is that we do not require any knowledge about the system dynamic and nonlinear characteristic, and can therefore treat the robot as a black box. It is also shown that the neural network is a powerful control theory for various trajectory tracking control of biped robot with same learning-vase. That is, we do net change the control parameter for various trajectory tracking control. Simulation and experimental result show that the neural network is practically feasible and realizable for iterative learning control of biped robot.

Implementation and performance evaluatio of learning control method for robot dyamics control (로봇의 동역학 제어를 위한 학습제어 기법의 구현 및 성능 평가)

  • 이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.552-555
    • /
    • 1997
  • Recently, increasing attention has been paid to the application of learning control method to robot manipulator control. Because the learning control method does not require an exact dynamic model, it is flexible and easy to implement. In this paper, we implement a learning control scheme which consists of a unique feedforward learning controller and a linear feedback controller. The learning control method does not require acceleration terms that are sensitive to noise and has the capability of rejecting unknown disturbances and adapting itself to time-varying system parameters. The feasibility of the learning control scheme is soon by implementing the control scheme to a commercial robot manipulator and the performance of which is also compared with the conventional linear PID control method.

  • PDF

Hands-free Robot Control System Using Mouth Tracking (입 추적을 이용한 로봇 원격 제어 시스템)

  • Wang, Liang;Xu, Yongzhe;Ahmed, Minhaz;Rhee, Phill-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.405-408
    • /
    • 2011
  • In this paper, we propose a robot remote control system based on mouth tracking. The main idea behind the work is to help disabled people who cannot operate a joystick or keyboard to control a robot with their hands. The mouth detection method in this paper is mainly based on the Adaboost feature detection approach. By using the proposed new Haar-like features for detecting the corner of mouth, the speed and accuracy of detection are improved. Combined with the Kalman filter, a continuous and accurate mouth tracking has been achieved. Meanwhile, the gripping commands of the robot manipulator were also achieved by the recognition of the user.s mouth shape, such as 'pout mouth' or 'grin mouth'. To assess the validity of the method, a mouth detection experiment and a robot cargo transport experiment were applied. The result indicated that the system can realize a quick and accurate mouse tracking; and the operation of the robot worked successfully in moving and bringing back items.

The Study of Barista Robots Utilizing Collaborative Robotics and AI Technology (협동로봇과 AI 기술을 활용한 바리스타 로봇 연구)

  • Do Hyeong Kwon;Tae Myeong Ha;Jae Seong Lee;Yun Sang Jeong;Yeong Geon Kim;Hyeon Gak Kim;Seung Jun Song;Dae Gil O;Geonu Lee;Jae Won Jeong;Seungwoon Park;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.3
    • /
    • pp.36-45
    • /
    • 2024
  • Collaborative robots, designed for direct interaction with humans have limited adaptability to environmental changes. This study addresses this limitation by implementing a barista robot system using AI technology. To overcome limitations of traditional collaborative robots, a model that applies a real-time object detection algorithm to a 6-degree-of-freedom robot arm to recognize and control the position of random cups is proposed. A coffee ordering application is developed, allowing users to place orders through the app, which the robot arm then automatically prepares. The system is connected to ROS via TCP/IP socket communication, performing various tasks through state transitions and gripper control. Experimental results confirmed that the barista robot could autonomously handle processes of ordering, preparing, and serving coffee.

Variable structrure system control method for the trajectory control of robot arm (로보트 팔의 궤도제어를 위한 가변구조제어방식)

  • 김주홍;송동설;엄기환;최우승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.12-17
    • /
    • 1991
  • In this paper, a variable structure system control method is proposed to the trajectory control of robot arm. A proposed method uses nonlinear switching function and saturation function. Furthermore, learning control method uses to decrease of the following error. The computer simulation results show that the chattering and the following error decrease and is improved the control the performance by a proposed method.

  • PDF

RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation (입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어)

  • Shin, Jin-Ho;Han, Dae-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.77-88
    • /
    • 2018
  • This paper proposes a RBFNN(Radial Basis Function Neural Network) based decentralized adaptive tracking control scheme using PSO(Particle Swarm Optimization) for an uncertain electrically driven robot system with input saturation. Practically, the magnitudes of input voltage and current signals are limited due to the saturation of actuators in robot systems. The proposed controller overcomes this input saturation and does not require any robot link and actuator model parameters. The fitness function used in the presented PSO scheme is expressed as a multi-objective function including the magnitudes of voltages and currents as well as the tracking errors. Using a PSO scheme, the control gains and the number of the RBFs are tuned automatically and thus the performance of the control system is improved. The stability of the total control system is guaranteed by the Lyapunov stability analysis. The validity and robustness of the proposed control scheme are verified through simulation results.

Humanoid Robot Performance System for Performing in Public Places (공공장소에서 공연을 위한 휴머노이드 로봇 공연 시스템)

  • Hwang, Heesoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.190-196
    • /
    • 2016
  • This paper proposes a humanoid robot performance system for performing in public places, such as an event, exhibition, or street performance. The system of modular structures can be moved easily, and can be played by a module or a combination of modules. The system developed with open source-based software and hardware is easy to adapt and improve. The robot performance control program for controlling robots, displays, audios, videos, and performance instruments was developed using the open source language, Processing. The performance instruments were developed using the open source hardware, Arduino. The contents of the robot performance were composed of scene-specific image, background audio, computer graphics, and videos. For their control and synchronization, the performance control program communicates with the humanoid robots and the performance instruments. In addition, performance accessories required to represent the performance concepts are produced by 3D modeling and printing. In a public place, the robot performance is performed with the theme of celebrating a Halloween day.

A Design and Implementation of Educational Mobile Robot System including Remote Control Function (원격 제어 기능을 포함한 교육용 모바일 로봇 시스템의 설계 및 구현)

  • Chung, Joong-Soo;Jung, Kwang-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.33-40
    • /
    • 2015
  • This paper presents the design and implementation of the educational remote controlled robot system including remote sensing in the embedded environment. The design of sensing information processing, software design and template design mechanism for the programming practice are introduced. LPC1769 using Cortex-M3 core as CPU, LPCXPRESSO as debugging environment, C language as firmware development language and FreeRTOS as OS are used in development environment. The control command is received via RF communication by the server and the robot system which is operated by driving the various sensors. The educational procedure is from robot demo operation program as hands-on practice and then compiling, loading of the basic robot operation program, already supplied. Thereafter the verification is checked by using the basic robot operation to allow demo operation such as hands-on-training procedure. The original protocol is designed via RF communication between server and robot system, and the satisfied performance result is presented by analyzing the robot sensing data processing.

Implementation of A Robust Force Controller Using Stable NAC(Natural Admittance Control) Method (안정된 고유 어드미턴스 제어방식을 이용한 강인한 힘 제어기의 구현)

  • Kim, Seung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.9-19
    • /
    • 2002
  • An NAC(Natural Admittance Control) system design is presented for interaction controller that achieves high-performance and guarantees stability. The NAC can be classified as a particular flavor of impedance control similar to control schemes that have velocity compensator and force compensator. The NAC significantly improves the response characteristics when Coulomb friction is presented in One-link Robot System and guarantees stability when robot contacts with environment. Pragmatic rules for NAC synthesis are derived. It shows method to choose a target impedance for realizable force compensator. Important parameters are found experimentally. It is demonstrated, by the experimental result, that NAC algorithm is successful in rejecting Coulomb friction through velocity compensator and guarantees stability through force compensator. We implement an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the natural admittance controller to the One-link robot system, and show the good performance on desired force control in case of contacting with arbitrary environment.