• Title/Summary/Keyword: Robot Control System

Search Result 2,876, Processing Time 0.035 seconds

Evolvable Neural Networks Based on Developmental Models for Mobile Robot Navigation

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.176-181
    • /
    • 2007
  • This paper presents evolvable neural networks based on a developmental model for navigation control of autonomous mobile robots in dynamic operating environments. Bio-inspired mechanisms have been applied to autonomous design of artificial neural networks for solving practical problems. The proposed neural network architecture is grown from an initial developmental model by a set of production rules of the L-system that are represented by the DNA coding. The L-system is based on parallel rewriting mechanism motivated by the growth models of plants. DNA coding gives an effective method of expressing general production rules. Experiments show that the evolvable neural network designed by the production rules of the L-system develops into a controller for mobile robot navigation to avoid collisions with the obstacles.

Development of soccer-playing robots using visual tracking

  • Park, Sung-Wook;Kim, Eun-Hee;Kim, Do-Hyun;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.617-620
    • /
    • 1997
  • We have built a robot soccer system to participate in MIROSOT97. This paper represents hardware specification of our system and our strategy. We select a centralized on-line system for a soccer game. The paper explains hardware specifications of our system for later development. Also, the paper explains our strategy from two viewpoints. From the viewpoint of cooperation, some heuristic ideas are implemented. From the viewpoint of path plan, Cubic spline is used with cost function which minimized time, radius of curvature for smoothness, and obstacle potential field. Direct comparison will be realized in MIROSOT97.

  • PDF

Telerobot control based on 3-D graphics (3차원 그래픽을 이용한 원격로보트 제어)

  • 김창회;황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1527-1530
    • /
    • 1996
  • Telerobot system is being developed for the application to nuclear power plants by Korea Atomic Energy Research Institute. Human-machine interaction and interface are very important elements of telerobotic systems. The main purpose of this study is developing a control system based on 3-D graphic techniques for the easy user interface and realistic visual I information supply. This system possesses the abilities for (1) virtual work, environment modelling and simulation, (2) kinematic animation include redundant behavior (3) interfacing with a real robot system, (4) transformation between real and virtual mode within the same graphics system. This system is especially focused on enhancing the overall efficiency and reliably of nozzle dam installation task inside water chamber of steam generator in nuclear power plant.

  • PDF

Implementation of a control system for a telerobot using DSP (DSP를 이용한 원격 로봇의 제어 시스템 구현)

  • 노철래;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.844-849
    • /
    • 1991
  • A high speed control system for a telerobot using DSP is developed. The system is designed to resolve computational burden in advanced algorithms. The design is assumed to h ave no specific algorithm and robot configuration. The system is composed of a teaching box, a DSP board, a set of servo drivers and 16 bit microcomputer system. The teaching box is designed as a man-machine interface, which has two joysticks with three degrees of freedom for velocity generation in Cartesian space. The DSP board, i.e. DSP56000ADS based on a 10.25MIPS digital signal processor, DSP56001, computes the inverse Jacobian matrix which transforms Cartesian velocity into joint velocity. A resolved motion rate control algorithm for a 5 degrees of freedom manipulator was implemented. About 100 Hz sampling rate was achieved in this system.

  • PDF

011-line Visual Feedback Control of Industrial Robot Manipulator (산업용 로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;김용태;이종두;이강두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.567-572
    • /
    • 2002
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS ). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Off-line Visual Feedback Control of Robot Manipulator (로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;이종두;이강두;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.140-145
    • /
    • 2001
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

The Development of a Remote User Interface for the Manipulator using the Ethernet (이더넷을 이용한 매니퓰레이터의 원격 유저 인터페이스 개발)

  • Lee, Jong-Soo;Ryoo, Sung-Yop;Lee, Ki-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.558-560
    • /
    • 1998
  • The operation of robot manipulators has a restriction that the operator must reside at the factory, where the manipulator is used. To overcome this restriction, we propose a remote control system using the internet, the system which runs on the Window 95 environment is composed of the remote client which transfers commands to the server which control and manage the manipulator in the factory. In the control of Hong-ik Direct Drive Arm, it is necessary to consider the complex nonlinear parameters causing the mutual interaction between joints, so we use two TMS320C31 DSP chips in the controller for the real time dynamic control algorithms. For the test of system integrity and the verification of the mathematical modeling, we apply CTM, PD and VSS control algorithms and the simulation results are satisfactory.

  • PDF

A Stability Effect of Passive Compliance on Active Compliance Control (수동 Compliance가 능동적 Compliance제어의 안정도에 미치는 영향)

  • Chung, Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.92-106
    • /
    • 1990
  • Active compliance is often used in the control of robot manipulators for the implementation of complex tasks such as assembly, multi-finger fine motion, legged-vehicle adaptive control,etc. This technique balances the interactive force between the manipulator tip and its working environment with its position and velocity errors to achieve the operation of a damped spring. This paper investigates the effecft of passive compliance on system stability with regard to force feedback implementation for actively compliant motion. Usually it is understood that accurate position control require a stiff system. However, theoretical examination of control experiments on a legged suspension vehicle suggests that, if the control includes discrete-time force feedback, some passive compliance is necessssary at the legs of the vehicle for system stability. This can be an important factor to bl considered in manipulator design and control. A theoretical analysis, numerical simulation, and experimental result, confirming the above conclusion, are introduced in this paper.

  • PDF

Non-regressor Based Adaptive Tracking Control of an Underwater Vehicle-mounted Manipulator (수중 선체에 장착된 로봇팔 궤적의 비귀환형 적응제어)

  • 여준구
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents a non-regressor based adaptive control scheme for the trajectory tracking of underwater vehicle-mounted manipulator systems(UVMS). The adaptive control system includes a class of unmodeled effects is applied to the trajectory control of an UVMS. The only information required to implement this scheme ios the upper bound and lowe bound of the system parameter matrices the upper bound of unmodeled effects the number of joints the position and attitude of the vehicle and trajectory commands. The adaptive control law estimates control gains defined by the combinations of the bounded constants of system parameter matrices and of a filtered error equation. To evaluate the performance of the non-regressor based adaptive controller computer simulation was performed with a two-link planar robot model mounted on an underwater vehicle. The hydrodynamic effects acting on the manipulator are included. It is assumed that the vehicle's motion is slow and can be predicted with a proper compensator.

  • PDF

Polynomial Fuzzy Modelling and Trajectory Tracking Control of Wheeled Mobile Robots with Input Constraint (입력제한을 고려한 이동로봇의 다항 퍼지모델링 및 궤적추적제어)

  • Kim, Cheol-Joong;Chwa, Dong-Kyoung;Oh, Seong-Keun;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1827-1833
    • /
    • 2009
  • This paper deals with the trajectory tracking control of wheeled mobile robots with input constraint. The proposed method converts the trajectory tracking problem to the system stability problem using the control inputs composed of feedforward and feedback terms, and then, by using Taylor series, nonlinear terms in origin system are transformed into polynomial equations. The composed system model can make it possible to obtain the control inputs using numerical tool named as SOSTOOL. From the simulation results, the mobile robot can track the reference trajectory well and can have faster convergence rate of the trajectory errors than the existing nonlinear control method. By using the proposed method, we can easily obtain the control input for nonlinear systems with input constraint.