• Title/Summary/Keyword: Robot Control

Search Result 5,339, Processing Time 0.033 seconds

A Visual Programming Environment on Tablet PCs to Control Industrial Robots (산업용 로봇 제어를 위한 태블릿 PC 기반의 비주얼 프로그래밍 연구)

  • Park, Eun Ji;Seo, Kyeong Eun;Park, Tae Gon;Sun, Duk Han;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Industrial robots have been usually controlled using text-based programming languages provided by each manufacturer with its button-based TP(Teaching Pendent) terminal. Unfortunately, when we consider that people who manipulate TPs in manufacturing sites are mostly unskilled with no background knowledge about computer programming, these text-based programming languages using button-based interaction on manufacturing sites are too difficult for them to learn and use. In order to overcome the weaknesses of the text-based programming language, we propose a visual programming language that can be easily used on gesture-enabled devices. Especially, in our visual programming environment, each command is represented as a block and robots are controlled by stacking those blocks using drag-and-drop gestures, which is easily learnable even by beginners. In this paper, we utilize a widely-spread device, Tablet PC as the gesture-enabled TP. Considering that Tablet PC has limited display space in contrast to PC environments, we designed different kinds of sets of command blocks and conducted user tests. Based on the experiment results, we propose an effective set of command blocks for Tablet PC environment.

Development Fundamental Technologies for the Multi-Scale Mass-Deployable Cooperative Robots (멀티 스케일 다중 전개형 협업 로봇을 위한 요소 기술 개발)

  • Chu, Chong Nam;Kim, Haan;Kim, Jeongryul;Song, Sung-Hyuk;Koh, Je-Sung;Huh, Sungju;Ha, ChangSu;Kim, Jong Won;Ahn, Sung-Hoon;Cho, Kyu-Jin;Hong, Seong Soo;Lee, Dong Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • 'Multi-scale mass-deployable cooperative robots' is a next generation robotics paradigm where a large number of robots that vary in size cooperate in a hierarchical fashion to collect information in various environments. While this paradigm can exhibit the effective solution for exploration of the wide area consisting of various types of terrain, its technical maturity is still in its infant state and many technical hurdles should be resolved to realize this paradigm. In this paper, we propose to develop new design and manufacturing methodologies for the multi-scale mass-deployable cooperative robots. In doing so, we present various fundamental technologies in four different research fields. (1) Adaptable design methods consist of compliant mechanisms and hierarchical structures which provide robots with a unified way to overcome various and irregular terrains. (2) Soft composite materials realize the compliancy in these structures. (3) Multi-scale integrative manufacturing techniques are convergence of traditional methods for producing various sized robots assembled by such materials. Finally, (4) the control and communication techniques for the massive swarm robot systems enable multiple functionally simple robots to accomplish the complex job by effective job distribution.

Design of Indoor Electric Moving and Lifting Wheelchair with Minimum Rotation Radius and Obstacle Overcoming (최소 회전반경 및 장애물 극복형 실내 전동 이·승강 휠체어의 설계)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.415-424
    • /
    • 2019
  • In this paper, a minimum rotation radius was designed and fabricated to overcome the threshold so that elderly or disabled people who have difficulty moving can move and transfer safely and conveniently in a narrow room. In the indoor environment, where the sedentary culture develops, this study aimed to provide convenience for passengers with fracture diseases, geriatric diseases, and other knee and waist diseases. First, links, seats, armrests, covers, motors, batteries, chargers, controllers, etc. were attached to the frame so that they could be moved and lifted indoors. The product design and structure were designed considering the user's environment and physical characteristics, and IoT functions were added. A driving experiment was performed to confirm the operating performance of the manufactured indoor moving and lifting wheelchair. The performance tests, such as continuous running time, turning radius, maximum actuator load, maximum lift height, sound pressure level, minimum sensing distance of the driving aid sensor, interworking of server and app programs, device compatibility, and duty cycle error rate, were performed. As a result of the test, the built-in wheelchair could achieve the performance test target of each item and operate successfully.

Improved Security for Fuzzy Fingerprint Vault Using Secret Sharing over a Security Token and a Server (비밀분산 기법을 이용한 보안토큰 기반 지문 퍼지볼트의 보안성 향상 방법)

  • Choi, Han-Na;Lee, Sung-Ju;Moon, Dae-Sung;Choi, Woo-Yong;Chung, Yong-Wha;Pan, Sung-Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Recently, in the security token based authentication system, there is an increasing trend of using fingerprint for the token holder verification, instead of passwords. However, the security of the fingerprint data is particularly important as the possible compromise of the data will be permanent. In this paper, we propose an approach for secure fingerprint verification by distributing both the secret and the computation based on the fuzzy vault(a cryptographic construct which has been proposed for crypto-biometric systems). That is, a user fingerprint template which is applied to the fuzzy vault is divided into two parts, and each part is stored into a security token and a server, respectively. At distributing the fingerprint template, we consider both the security level and the verification accuracy. Then, the geometric hashing technique is applied to solve the fingerprint alignment problem, and this computation is also distributed over the combination of the security token and the server in the form of the challenge-response. Finally, the polynomial can be reconstructed from the accumulated real points from both the security token and the server. Based on the experimental results, we confirm that our proposed approach can perform the fuzzy vault-based fingerprint verification more securely on a combination of a security token and a server without significant degradation of the verification accuracy.

Analysis of driving characteristics of electric wheelchair for indoor driving using lithium-ion battery (리튬이온 배터리를 적용한 실내용 전동휠체어 주행특성 분석)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.857-866
    • /
    • 2020
  • 'Movement' is an expanded concept of 'place' where people act, interact with one another and achieve a specific purpose at every moment. Wheelchairs, as a mobility aid, have a profound impact on improving the quality of physical and psychological well-being for the mobility disadvantaged groups who have mobility difficulties. Such mobility aids were developed mainly for outdoor activities, but in recent years, mobility aids for indoor spaces, the main living environment, are also being developed. Because indoor mobility aids generally move short distances repeatedly, this study examined the characteristics of lithium-ion batteries in short-distance driving of battery-powered wheelchairs and compared them with the characteristics of lithium-ion batteries in continuous driving. The result showed that the driving time for short-distance driving was 2.8% shorter than that of continuous driving. The current supplied to the motor was 15.4% higher for short-distance driving than that of continuous driving.

Effective Utilization of Domain Knowledge for Relational Reinforcement Learning (관계형 강화 학습을 위한 도메인 지식의 효과적인 활용)

  • Kang, MinKyo;Kim, InCheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • Recently, reinforcement learning combined with deep neural network technology has achieved remarkable success in various fields such as board games such as Go and chess, computer games such as Atari and StartCraft, and robot object manipulation tasks. However, such deep reinforcement learning describes states, actions, and policies in vector representation. Therefore, the existing deep reinforcement learning has some limitations in generality and interpretability of the learned policy, and it is difficult to effectively incorporate domain knowledge into policy learning. On the other hand, dNL-RRL, a new relational reinforcement learning framework proposed to solve these problems, uses a kind of vector representation for sensor input data and lower-level motion control as in the existing deep reinforcement learning. However, for states, actions, and learned policies, It uses a relational representation with logic predicates and rules. In this paper, we present dNL-RRL-based policy learning for transportation mobile robots in a manufacturing environment. In particular, this study proposes a effective method to utilize the prior domain knowledge of human experts to improve the efficiency of relational reinforcement learning. Through various experiments, we demonstrate the performance improvement of the relational reinforcement learning by using domain knowledge as proposed in this paper.

Proposal for the 『Army TIGER Cyber Defense System』 Installation capable of responding to future enemy cyber attack (미래 사이버위협에 대응 가능한 『Army TIGER 사이버방호체계』 구축을 위한 제언)

  • Byeong-jun Park;Cheol-jung Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.157-166
    • /
    • 2024
  • The Army TIGER System, which is being deployed to implement a future combat system, is expected to bring innovative changes to the army's combat methods and comabt execution capability such as mobility, networking and intelligence. To this end, the Army will introduce various systems using drones, robots, unmanned vehicles, AI(Artificial Intelligence), etc. and utilize them in combat. The use of various unmanned vehicles and AI is expected to result in the introduction of equipment with new technologies into the army and an increase in various types of transmitted information, i.e. data. However, currently in the military, there is an acceleration in research and combat experimentations on warfigthing options using Army TIGER forces system for specific functions. On the other hand, the current reality is that research on cyber threats measures targeting information systems related to the increasing number of unmanned systems, data production, and transmission from unmanned systems, as well as the establishment of cloud centers and AI command and control center driven by the new force systems, is not being pursued. Accordingly this paper analyzes the structure and characteristics of the Army TIGER force integration system and makes suggestions for necessity of building, available cyber defense solutions and Army TIGER integrated cyber protections system that can respond to cyber threats in the future.

Scientific Awareness appearing in Korean Tokusatsu Series - With a focus on Vectorman: Warriors of the Earth (한국 특촬물 시리즈에 나타난 과학적 인식 - <지구용사 벡터맨>을 중심으로)

  • Bak, So-young
    • (The) Research of the performance art and culture
    • /
    • no.43
    • /
    • pp.293-322
    • /
    • 2021
  • The present study examined the scientific awareness appearing in Korean tokusatsu series by focusing on Vectorman: Warriors of the Earth. As a work representing Korean tokusatsu series, Vectorman: Warriors of the Earth achieved the greatest success among tokusatsu series. This work was released thanks to the continued popularity of Japanese tokusatsu since the mid-1980s and the trend of robot animations. Due to the chronic problems regarding Korean children's programs-the oversupply of imported programs and repeated reruns-the need for domestically produced children's programs has continued to come to the fore. However, as the popularity of Korean animation waned beginning in the mid-1990s, inevitably the burden fr producing animation increased. As a result, Vectorman: Warriors of the Earth was produced as a tokusatsu rather than an animation, and because this was a time when an environment for using special effects technology was being fostered in broadcasting stations, computer visual effects were actively used for the series. The response to the new domestically produced tokusatsu series Vectorman: Warriors of the Earth was explosive. The Vectorman series explained the abilities of cosmic beings by using specific scientific terms such as DNA synthesis, brain cell transformation, and special psychological control device instead of ambiguous words like the scientific technology of space. Although the series is unable to describe in detail about the process and cause, the way it defines technology using concrete terms rather than science fiction shows how scientific imagination is manifesting in specific forms in Korean society. Furthermore, the equal relationship between Vectorman and the aliens shows how the science of space, explained with the scientific terms of earth, is an expression of confidence regarding the advancement of Korean scientific technology which represents earth. However, the female characters fail to gain entry into the domain of science and are portrayed as unscientific beings, revealing limitations in terms of scientific awareness.

Development of a prototype simulator for dental education (치의학 교육을 위한 프로토타입 시뮬레이터의 개발)

  • Mi-El Kim;Jaehoon Sim;Aein Mon;Myung-Joo Kim;Young-Seok Park;Ho-Beom Kwon;Jaeheung Park
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.257-267
    • /
    • 2023
  • Purpose. The purpose of the study was to fabricate a prototype robotic simulator for dental education, to test whether it could simulate mandibular movements, and to assess the possibility of the stimulator responding to stimuli during dental practice. Materials and methods. A virtual simulator model was developed based on segmentation of the hard tissues using cone-beam computed tomography (CBCT) data. The simulator frame was 3D printed using polylactic acid (PLA) material, and dentiforms and silicone face skin were also inserted. Servo actuators were used to control the movements of the simulator, and the simulator's response to dental stimuli was created by pressure and water level sensors. A water level test was performed to determine the specific threshold of the water level sensor. The mandibular movements and mandibular range of motion of the simulator were tested through computer simulation and the actual model. Results. The prototype robotic simulator consisted of an operational unit, an upper body with an electric device, a head with a temporomandibular joint (TMJ) and dentiforms. The TMJ of the simulator was capable of driving two degrees of freedom, implementing rotational and translational movements. In the water level test, the specific threshold of the water level sensor was 10.35 ml. The mandibular range of motion of the simulator was 50 mm in both computer simulation and the actual model. Conclusion. Although further advancements are still required to improve its efficiency and stability, the upper-body prototype simulator has the potential to be useful in dental practice education.