• Title/Summary/Keyword: Robot Arm

Search Result 628, Processing Time 0.032 seconds

The multiple Control Law Design of the Variable Structure Control for Angular Position Control of the Robot Arm with an Indirect Driving Joint Using Balance of the Inertial Moment (관성모멘트의 균형을 이용하는 간접구동관절을 갖는 로보트아암의 각위치 제어를 위한 가변구조제어기의 다중 제어법칙 설계)

  • Kim, Joong-Wan;Kang, Dae-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.76-83
    • /
    • 1996
  • We have developed the unconventional robot arm which is composed of the two main parts, one is a ball screw and the other is a robot arm. The dynamic systems of the robot arm and ball screw are unstable systems coupled with each other. The ball screw mechanism is unstable system but controllable system. The robot arm's dynamics is quasi stable system when ball screw's angular position is zero, else, unstable system. Our system has the duality between stability and controllability at the view point of control. This duality causes difficulty to control of the robot arm using normal control law. We have investigated the location of the characteristic roots of the dynamic equation. And we have found out that the best condition for the control of the arm is quasi stable state. In this paper, we have proposed multiple control laws which are consist of three components to guarantee the stability and controllability simultaneously. The computer simulations were carried out based on VSC about the angular position control of the robot arm, and it is confirmed that the good performances could be obtained by using new controller.

  • PDF

Vibration Control of a Flexible Fobot Manipulator (유연한 로봇팔의 진동제어)

  • 신효필;윤여산;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.229-232
    • /
    • 1996
  • The position control accuracy of the robot arm is decreased significantly when a long arm robot is operated at high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system will be necessarily designed with its elastic modes taken into account. In this paper, the vibration control of a one-link flexible robot arm is presented. The robot system consists of a flexible arm manufactured with thin aluminium plate, AC servomotor with a harmonic drive for speed reduction, optical encoder and accelerometer. The system is modeled with limited number of elastic modes, and its parameters are determined from the results of the experiments. The implemented control schemes are LQ control and sliding mode control. The experiments and digital simulations are carried out to test the validity of the system modeling, controller design, and active control implementation.

  • PDF

Optimal Design of Robot-Arm using Design of Experiments (실험 계획법을 이용한 로봇 암부위 최적설계)

  • Chung W.J.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.395-396
    • /
    • 2006
  • This paper presents the optimal design of Robot-Arm part use Design of Experiment(DOE). The DOE(Design of Experiment)was conducted to find out main effect factors for design of Robot-Arm part. In this design of Robot-Arm, 5 control factors include numbers of 4 level are selected and we make out L16 orthogonal array. Using this orthogonal array, find out optimal value and main effect factors of object function for design of Robot-Arm part by 16 times of test. We evidence this optimal value by using CATIA V5 Analysis.

  • PDF

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

A Development of Robot Arm Direct Teaching System (로봇팔 직접 교시 시스템 개발)

  • Woong-Keun Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.85-92
    • /
    • 2024
  • In this paper, we developed an intuitive teaching and control system that directly teaches a task by holding the tip of a robotic arm and moving it to a desired position. The developed system consists of a 6-axis force sensor that measures position and attitude forces at the tip of the robot arm, an algorithm for generating robot arm joint speed control commands based on the measured forces at the tip, and a self-made 6-axis robot arm and control system. The six-dimensional force/torque of the position posture of the robot arm operator steering the handler is detected by the force sensor attached to the handler at the leading edge and converted into velocity commands at the leading edge to control the 7-axis robot arm. The verification of the research method was carried out with a self-made 7-axis robot, and it was confirmed that the proposed force sensor-based robot end-of-arm control method operates successfully through experiments by teaching the operator to adjust the handler.

Development of a Dual-arm Collaborative Robot System for Chemical Drum Assembly

  • Gi-Seong Kim;Sung-Hun Jeong;Shi-Baek Park;Han-Sung Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_1
    • /
    • pp.545-551
    • /
    • 2023
  • In this paper, a robot automation methodology for chemical drum assembly in semiconductor industries are presented. Robot automation is essential to resolve safety issues in which operators are directly or indirectly exposed to chemicals or fumes in assembling dispense heads on chemical drums. However, the chemical drum assembling process involves complex and difficult tasks, such as mating male/female keycodes and fastening screws with large-diameter, which may be very difficult to be performed by a single-arm robot with a commercial rigid F/T sensor. In order to solve the problems, a method for assembling a chemical drum using dual-arm collaborative robot system, compliance F/T sensor, robot vision and gripper is presented.

Design and Control of Wire-driven Flexible Robot Following Human Arm Gestures (팔 동작 움직임을 모사하는 와이어 구동 유연 로봇의 설계 및 제어)

  • Kim, Sanghyun;Kim, Minhyo;Kang, Junki;Son, SeungJe;Kim, Dong Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.50-57
    • /
    • 2019
  • This work presents a design and control method for a flexible robot arm operated by a wire drive that follows human gestures. When moving the robot arm to a desired position, the necessary wire moving length is calculated and the motors are rotated accordingly to the length. A robotic arm is composed of a total of two module-formed mechanism similar to real human motion. Two wires are used as a closed loop in one module, and universal joints are attached to each disk to create up, down, left, and right movements. In order to control the motor, the anti-windup PID was applied to limit the sudden change usually caused by accumulated error in the integral control term. In addition, master/slave communication protocol and operation program for linking 6 motors to MYO sensor and IMU sensor output were developed at the same time. This makes it possible to receive the image information of the camera attached to the robot arm and simultaneously send the control command to the robot at high speed.

Application Study of Nonlinear Transformation Control Theory for Link Arm System (링크 암에 대한 비선형 변환 제어 이론의 응용 연구)

  • Baek, Y.S.;Yang, C.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

A Study on Collision Avoidance for Multi-link Intelligent Robots (다관절 지능 로봇시스템을 위한 장애물 우회 연구)

  • 신현배;이병룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.165-173
    • /
    • 1998
  • In this paper, a motion control algorithm is developed by using fuzzy control technique, which makes a robot arm avoid unexpected obstacles when the robot is moving from the start to a goal posture. During the motion, if there exist no obstacles the robot arm moves along the pre-defined path. But if some obstacles are recognized and close to the robot arm, a fuzzy controller is activated to adjust the path of the robot arm. To show the feasibility of the developed algorithm, numerical simulations and experiments are carried out. In the experiments, redundant planar robot arms are considered for the collision avoidance test, and it was proved that the developed algorithm gives good collision avoiding performance.

  • PDF