• Title/Summary/Keyword: Robot's hand

Search Result 110, Processing Time 0.025 seconds

Posture Optimization for a Humanoid Robot using Particle Swarm Optimization (PSO를 이용한 휴머노이드 로봇의 최적자세 생성)

  • Yun, JaeHum;Chien, Dang Van;Tin, Tran Trung;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.450-456
    • /
    • 2014
  • Humanoid robot is the most suitable robot platform for effective human and robot interaction. However, the robot's complicated body structure containing more than twenty joint actuators makes it difficult to generate stable and elaborate postures using the conventional inverse kinematic method. This paper proposes an alternative approach to generate difficult postures of touching an object placed in front of the foot by the left or right hand with its torso bent forward in single support phase using the fast computational optimization method, particle swarm optimization. The simulated postures are also applied to a commercial humanoid robot platform, which validates the feasibility of the proposed approach.

Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector (충돌 벡터를 이용한 이동로봇의 동적 장애물 회피)

  • Seo, Dae-Geun;Lyu, Eun-Tae;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

Method for C-arm Based Guide Needle Insertion Assistant System for Endoscopic Disc Surgery (C-arm 영상 기반 척추 디스크 내시경 수술을 위한 가이드 바늘 삽입 보조 시스템)

  • Yoon, Hyon Min;Cho, Hyunchul;Park, Kyusic;Shin, Sangkyun;Lee, Deukhee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • Due to an increased sitting time in work, lumbar disc disease is one of the most frequent diseases in modern days, and this occasionally requires surgery for treatment. Endoscopic disc surgery, one of the common disc surgeries, requires a process of inserting a guide needle to the target disc for which the insertion path is manually planned by drawing lines on the patient's skin while monitoring the fluoroscopic view of the lumbar. Such procedure inevitably exposes both surgeon and patient to the fluoroscopy radiation emitted from the c-arm for a long time. To reduce the radiation exposure time, this study proposes a computer assisted method of calculating the 3D guide needle path by using 2D c-arm images of the disc in 3 different angles. Additionally, a method of the guide robot control based on the 3D needle path was developed by implementing the Hand-eye Calibration method to calculate the transformation matrix between the c-arm and robot base coordinate systems. The proposed system was then tested for its accuracy.

A Study on the Improvement of Pose Information of Objects by Using Trinocular Vision System (Trinocular Vision System을 이용한 물체 자세정보 인식 향상방안)

  • Kim, Jong Hyeong;Jang, Kyoungjae;Kwon, Hyuk-dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.223-229
    • /
    • 2017
  • Recently, robotic bin-picking tasks have drawn considerable attention, because flexibility is required in robotic assembly tasks. Generally, stereo camera systems have been used widely for robotic bin-picking, but these have two limitations: First, computational burden for solving correspondence problem on stereo images increases calculation time. Second, errors in image processing and camera calibration reduce accuracy. Moreover, the errors in robot kinematic parameters directly affect robot gripping. In this paper, we propose a method of correcting the bin-picking error by using trinocular vision system which consists of two stereo cameras andone hand-eye camera. First, the two stereo cameras, with wide viewing angle, measure object's pose roughly. Then, the 3rd hand-eye camera approaches the object, and corrects the previous measurement of the stereo camera system. Experimental results show usefulness of the proposed method.

A Study on the Role of Social Robot in Aspect of User Experiences -Focus on Single-person Households- (사용자 경험 측면에서 소셜로봇의 역할에 관한 고찰 -1인 가구 생활을 중심으로-)

  • Chae, Min-Young;Kim, Seung-In
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.295-300
    • /
    • 2017
  • The study evaluates exploration of social robot's role which can emotionally communicate with human as an alternative to heal psychological isolation for single-person households. At first, I conduct a study on literatured to understand the definition and characteristics of social robot then analyze the current situation and future prospects. Based on this, I organized the requirements of social robot in aspect of user experience through in-depth interview of twenties single-person households living in the metropolitan area who could be potential customers. As a result every subject require social robot specialized to them through accumulated interaction. On the other hand, degree of attachment with social robot is different from subjects. Hear by I realize every subject require social robot to different and various functions according to their lifestyle and personality. Therefore I could draw conclusions and implications from this study that technical development in aspect of personalized user experience is necessary for social robot to settle in to human's life in the future.

A Study on High Speed Laser Welding by using Scanner and Industrial Robot (스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Kim, Jong-Su;Kim, Jeng-O;Cho, Taik-Dong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

Development of Vision Control Scheme of Extended Kalman filtering for Robot's Position Control (실시간 로봇 위치 제어를 위한 확장 칼만 필터링의 비젼 저어 기법 개발)

  • Jang, W.S.;Kim, K.S.;Park, S.I.;Kim, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • It is very important to reduce the computational time in estimating the parameters of vision control algorithm for robot's position control in real time. Unfortunately, the batch estimation commonly used requires too murk computational time because it is iteration method. So, the batch estimation has difficulty for robot's position control in real time. On the other hand, the Extended Kalman Filtering(EKF) has many advantages to calculate the parameters of vision system in that it is a simple and efficient recursive procedures. Thus, this study is to develop the EKF algorithm for the robot's vision control in real time. The vision system model used in this study involves six parameters to account for the inner(orientation, focal length etc) and outer (the relative location between robot and camera) parameters of camera. Then, EKF has been first applied to estimate these parameters, and then with these estimated parameters, also to estimate the robot's joint angles used for robot's operation. finally, the practicality of vision control scheme based on the EKF has been experimentally verified by performing the robot's position control.

Event Port Extension of OPRoS Framework for Inter-connecting with ROS Topic (ROS 토픽과 결합 가능한 OPRoS 프레임워크의 이벤트 포트 확장 개발)

  • Jang, Choulsoo;Song, Byoungyoul;Kim, Sunghoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1252-1258
    • /
    • 2014
  • ROS is based on a graph architecture where processing takes place in nodes. Nodes communicate together by passing messages through topics based on the publish/subscribe model. On the other hand, OPRoS components know each other and are tightly-coupled via port connections, and different coupling schemes make the interoperation between two platforms difficult. This paper describes an extension of OPRoS framework to support the interoperation with the ROS topic.

A Study on Technique of Navigation with Power-Reflected of the Walker in the Indoor Environment

  • Kim, Min-Sik;Kwon, Hyouk-Gil;Ryu, Je-Goon;Shim, Hyeon-Min;Lee, Eung-Hyuk;Shim, Jea-Hong;Lee, Sang-Moo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.957-962
    • /
    • 2005
  • Today, the elderly is increasing gradually in the Republic of Korea society and this problem will be more serious in the near future. Therefore, engineering support for aged people is required. We are establishing a new field of healthcare engineering for elderly people and aiming to support for aged people and disabled people using adaptive control and instrument technology. In this paper, the goal is to implement the shared control of a robot mobility aid for the elderly. As using this type of assistive technology to be useful by its intended user community, it supports elderly people and handicapped people to live independently in their private homes. The interface transforms the force applied by the user into the robot's motion. Devices like buttons, joysticks, and levers already exist for relaying user input; however, they require hand displacement that would loosen or otherwise release the user's hold. Such interfaces make operation very difficult and potentially unsafe. Therefore, we propose a shared control system. It's safe more than joysticks and buttons. The shared control is a means of registering the user's intention through physical interaction. It's an important component in the development of robotic elderly assistant. The concept of shared control describes a system which is two or more independent control systems. We are using that the three component blocks consist of pressure sensor (flexible force sensor), circuit of measurement and transfer function. Experimental trials of this paper have been tested at the indoor environment. The robot is able to know the user intended direction through haptic device were logged along with the robot's force sensor.

  • PDF

Color Vision System for Intelligent Rehabilitation Robot mounted on the Wheelchair (휠체어 장착형 지능형 재활 로봇을 위한 칼라 비전 시스템)

  • Song, Won-Kyung;Lee, He-Young;Kim, Jong-Sung;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.75-87
    • /
    • 1998
  • KARES (KAIST Rehabilitation Engineering System) is the rehabilitation robot system in the type of the 6 degrees of freedom robot arm mounted on the wheelchair, in order to assist the independent livelihood of the disabled and the elderly. The interface device for programming and controlling of the robot arm is essential in the rehabilitation robotic system. Specially, in the case of the manual operation of the robot arm, the user has the burden of cognition and the difficulty for the operation of the robot arm. As a remedy, color vision system for the autonomous performance of jobs is proposed, and four basic desired jobs are specified. By mounting the camera in eye-in-hand type, color vision system for KARES is set up. The desired jobs for picking up the target and moving it to the user's face for drinking are successfully performed in real-time at the indoor environment.

  • PDF