• 제목/요약/키워드: Robert 연산자

검색결과 4건 처리시간 0.017초

개선된 영상 처리기법을 이용한 콘크리트 표면 균열 추출 및 분석

  • 이재언;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.365-372
    • /
    • 2007
  • 본 논문에서는 콘크리트 표면 균열 영상에서 균열의 특징들을 추출하기 위하여, 영상 처리 기법을 개선하여 균열의 특징(길이,폭,방향)들을 자동으로 추출 및 분석 할 수 있는 기법을 제안한다. 기존의 영상 처리 기법에서는 비교적 잡음이 적고 균열이 적은 영상을 대상으로 균열을 추출하는 알고리즘을 제시하였기 때문에 많은 잡음과 균열을 가지는 영상에 대해서는 균열 검출 성능이 떨어지는 경향이 있다. 따라서, 본 논문에서 제안한 균열 추출 및 분석 알고리즘은 컬러 영상에서 Histogram Stretching 기법을 적용하여 영상의 콘트라스트 특성을 향상 시킨 후, Robert 연산자를 다시 적용해 균열을 강조하고, 강조된 균열을 Multiple 연산을 이용하여 밝기 차이를 크게 한 후, 개선된 적응 이진화기법을 이용하여 균열의 후보 영역을 추출한다. 추출된 균열 후보 영역을 형상 분석과 위치 및 방향분석을 이용하여 잡음을 제거하고 균열의 특징을 분석한다. 실제 콘크리트 표면 균열 영상을 대상으로 실험한 결과, 균열 검출 성능이 기존의 방법보다 본 논문에서 제안한 방법이 더 우수함을 확인하였다.

  • PDF

영상의 정보척도와 신경회로망을 이용한 계단에지 검출에 관한 연구 (A Study on the step edge detection method based on image information measure and eutral network)

  • 이상빈;김수겸
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.549-555
    • /
    • 2006
  • 에지검출은 영상처리와 컴퓨터비젼의 매우 중요한 연구분야이다. 그리고 일반적인 에지검출 연산자인 Robert, Sobel, Kirsh등의 연산자는 계단에지를 검출하는데는 적합하나 잡음에 매우 민감한 단점을 가지고 있다. 따라서 본 논문에서는 영상정보척도와 신경회로망을 이용한 잡음에 매우 강한 계단에지 검출방법을 제안한다. 계단에지의 명암도 분포의 차, 방향성, 연속성, 구조성 등의 계단에지의 기본적인 정보특성을 이용한 함수를 BP 신경회로망의 입력벡터로 구성한 결과 매우 위치가 정확한 계단에지를 얻을 수 있었다. 또한 실험 영상으로 장미 영상과 세포영상을 사용하여 매우 만족스런 실험 결과를 얻을 수 있었다.

레이다 영상의 경계 검출 (Detection of Edge on Radar Image)

  • 윤동한;최갑석
    • 한국통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.405-413
    • /
    • 1987
  • 본 논문은 2-차원에서 3가지 형태(Square, Cross, X-shape)의 메디안 필터를 사용하여 레이다 영상의 원영상을 유지하면서 잡음을 제거하여 영상을 개선하고, 연산자를 적용하여 경계를 검출한다. 레이다 영상의 특성에서 곡선 부분이 많으므로 제안된 경계 검출 연산자에 의한 결과와 기존의 경계검출 방법인 Sobel, Prewitt, Robert, Laplacian. Kirsch의 결과를 비교한다.

  • PDF

ART2 기반 RBF 네트워크를 이용한 콘크리트 슬래브 표면의 균열 추출 및 인식 (Extraction and Recognition of Concrete Slab Surface Cracks using ART2-based RBF Network)

  • 김광백
    • 한국멀티미디어학회논문지
    • /
    • 제10권8호
    • /
    • pp.1068-1077
    • /
    • 2007
  • 본 논문에서는 콘크리트 표면 품질이 좋은 영상뿐만 아니라, 기존의 영상처리 기법에서 다루지 않았던 표면 품질이 좋지 않은 영상에 대해서도 효율적으로 균열을 추출하고, 추출된 균열의 특징인 길이, 방향, 폭을 자동으로 계산한 후, ART2 기반 RBF 네트워크를 적용하여 균열의 방향성($-45^{\circ}$방향, $45^{\circ}$방향, 횡방향, 종방향)을 인식하는 기법을 제안한다. 본 논문에서 제안한 콘크리트 균열 추출 및 분석 알고리즘은 Roberts 연산자를 이용하여 균열을 강조하고, 강조된 균열을 Multiple 연산을 이용하여 균열과 배경간의 밝기 차이를 크게 한 후, 개선된 적응 이진화 기법을 이용하여 균열의 후보 영역을 추출한다. 추출된 균열 후보 영역을 형상 분석과 위치 및 방향 분석을 이용하여 3차례에 걸쳐 잡음을 제거하고, 잡음 제거 과정에서 잡음으로 분류된 균열을 복원하여 균열의 특징을 분석한다. 그리고 ART2 기반 RBF 네트워크를 균열의 방향성($-45^{\circ}$방향, $45^{\circ}$방향, 횡방향, 종방향)에 적용하여 인식한다. 제안된 ART2 기반 RBF 네트워크는 입력층과 중간층으로의 학습은 ART2을 적용하고 중간층과 출력층간의 학습은 Delta 학습 방법을 적용한다. 실제 콘크리트 표면 균열 영상을 대상으로 실험한 결과, 제안한 방법이 기존의 방법보다 균열의 검출 성능이 개선되었고 잡음으로 분류된 균열도 효율적으로 복원되었다. 또한 제안된 ART2 기반 RBF 네트워크가 균열의 방향성 인식에 효율적임을 확인할 수 있었다.

  • PDF