• Title/Summary/Keyword: Roadways

Search Result 133, Processing Time 0.041 seconds

Developing a Structural Equation Model of Drivers' Preference on Route Diagrams of Variable Message Sign (구조방정식 모형을 이용한 도형식 가변안내표지판의 운전자 선호도 평가 모형 개발)

  • Kwon, Hye Ri;Kim, Byung Jong;Kim, Won Kyu;Yu, Su In
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.47-65
    • /
    • 2014
  • VMS(Variable Message Sign) helps drivers to choose their path to destinations on roadways. Some types of VMS often provide traffic information with clearly visible and comprehensible graphical route diagrams. Currently many diagramed types of VMS are installed on urban arterial and highways. This type of VMS surely enhances drivers' ability to comprehend traffic route information while they are driving on the roadway. Nevertheless, some of them are presented with so much information and design elements and they sometimes lead to decline of drivers' comprehensible level for traffic information. Drivers would fail to decide their preferable route in this state of information overflow. The purpose of this paper is to develop a drivers preference model for effective design principle including size and height of displaying font, and the amount of information in the route diagram considering driving speed, sex and age of the driver. This model is developed using structural equation modeling techniques. This model considers driver's emotional factor and, human factor and design component of route diagram. To collect data, we built driving simulator which is able to replicate real driving condition. 72 people who participated in the simulation were selected considering gender and age. The developed model showed that the amount of information, and visibility are more influential factors to the drivers' preference of the route diagram on VMS than design elements such as the shape and the font of the diagram.

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

Characteristics and Modeling of Operating Speed at Horizontal Curves on Rural Four-Lane Highways (국도 4차로 곡선부에서 주행속도의 특성 및 모형)

  • 고종대;장명순;정준화
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.95-105
    • /
    • 2002
  • Under a specific roadway alignment condition by design-speed standards, safety of the roadway is determined by an actual operating speed of a driver. This research takes first lanes of four-lane(hi-direction) rural highways as target facility. It also takes the straight and curved lanes of the selected highways for in-depth study. This study used NC-97 to detect speeds of passenger cars whose speeds are not affected by front vehicles. This research analyzed properties of 85th percentile operating speed at upstream of horizontal and through curves under various alignment conditions. The results show that 53∼65 Percent of drivers drive faster than the posted speed-limit (80KPH) by 14∼20 KPH on average. It also shows that the 85th-percentile operating speeds are the lowest at the middle point of curve length when curve radius is smaller. However, they are lowest at 1/4 point of curve length when curve radius is greater. Along roadways where curve radius is small, difference between upstream speed and the speed along the curve is considerably large. On the other hand. the speed difference is setting smaller as the curve radius is increasing. According to the results, significant variables affecting the 85th percentile operating speeds are curve radius and the 85th-Percentile operating speeds of upstream curves.

Conceptual Design of Automatic Control Algorithm for VMSs (VMS 자동제어 알고리즘 설계)

  • 박은미
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.177-183
    • /
    • 2002
  • Current state-of-the-art of VMS control is based upon simple knowledge-based inference engine with message set and each message's priority. And R&Ds of the VMS control are focused on the accurate detection and estimation of traffic condition of the subject roadways. However VMS display itself cannot achieve a desirable traffic allocation among alternative routes in the network In this context, VMS display strategy is the most crucial part in the VMS control. VMS itself has several limitations in its nature. It is generally known that VMS causes overreaction and concentration problems, which may be more serious in urban network than highway network because diversion should be more easily made in urban network. A feedback control algorithm is proposed in this paper to address the above-mentioned issues. It is generally true that feedback control approach requires low computational effort and is less sensitive to models inaccuracy and disturbance uncertainties. Major features of the proposed algorithm are as follows: Firstly, a regulator is designed to attain system optimal traffic allocation among alternative routes for each VMS in the network. Secondly, strategic messages should be prepared to realize the desirable traffic allocation, that is, output of the above regulator. VMS display strategy module is designed in this context. To evaluate Probable control benefit and to detect logical errors of the Proposed feedback algorithm, a offline simulation test is performed using real network in Daejon, Korea.

Exposure Assessment of Particulate Matter among Door-to-door Deliverers Using GPS Devices (GPS를 이용한 택배서비스업 근로자의 미세먼지 노출 평가)

  • Lee, Ga Hyun;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2017
  • Objectives: The objective of this study was to evaluate the exposure levels of door-to-door deliverers to fine particulate matter (PM2.5). Another objective was to confirm the general working patterns of door-to-door deliverers via survey. Methods: In the city of Daegu, ten door-to-door deliverers who wished to join the study were recruited. The general working characteristics of door-to-door deliverers were surveyed using self-reported questionnaires. In the cabin of each car driven by a deliverer, a real-time PM2.5 sampler (Sidepak, Model AM510, TSI Inc., MN, USA) and a GPS device (GPS 741, Ascen, Korea) were installed. Each deliverer was monitored for four days per week so that each day could be monitored at least four times. Results: A total of 40 measurements of PM2.5 concentrations were taken during delivery of parcels. The average exposure levels of door-to-door deliverers to PM2.5 was $44.62{\mu}g/m^3$ ($7-9443{\mu}g/m^3$. Exposure levels to PM2.5 according to the day of the week and coverage areas were not significantly different (p>0.05). Door-to-door deliverers using trucks with older diesel engines manufactured before 2006 had significantly higher exposure levels to PM2.5 than in the case of trucks with diesel engines manufactured after 2006 (p<0.05). Many of the door-to-door deliverers reported the status of having windows open during the delivery task. During delivery services, the working hours spent in residential areas were higher than on roadsides, but exposure levels to PM2.5 in residential areas and on roadsides were $46.17{\mu}g/m^3$ and $49.90{\mu}g/m^3$, respectively. Real-time PM2.5 exposure levels were significantly different between roadways and residential areas (p<0.001). Conclusions: PM2.5 exposure levels of door-to-door deliverers were found to be affected by higher vehicle emissions from the roadsides near their vehicle during deliveries and while driving to other locations compared to by PM2.5 from the diesel engines of their own trucks. Particle concentrations from roadsides and emissions from nearby vehicles through open windows were the main source of PM2.5.

Development and Exploration of Safety Performance Functions Using Multiple Modeling Techniques : Trumpet Ramps (다양한 통계 기법을 활용한 안전성능함수 개발 및 비교 연구 : 트럼펫형 램프를 중심으로)

  • Yang, Samgyu;Park, Juneyoung;Kwon, Kyeongjoo;Lee, Hyunsuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.35-44
    • /
    • 2021
  • In recent times, several studies have been conducted focusing on crashes occurring on the main segment of the highway. However, there is a dearth of research dealing with traffic safety relating to other highway facilities, especially ramp areas. According to the Korea Expressway Corporation's Expressway Information Service, 6,717 crashes have occurred on ramps in the five years from 2015~2019, which accounts for about 15% of all highway accidents. In this study, the simple and full safety performance functions (SPFs) were evaluated and explored using different statistical distributions (i.e., Poisson Gamma (PG) and Poisson Inverse Gaussian (PIG)) and techniques (i.e., fixed effects (FE) and random effects (RE)) to provide more accurate crash prediction models for highway ramp sections. Data on the geometric characteristics of traffic and roadways were collected from various systems and with extensive efforts using a street-view application. The results showed that the PIG models present more accurate crash predictions in general. The results also indicated that the RE models performed better than FE models for simple and full SPFs. The findings from this study offer transportation practitioners using the Korea Expressway Corporation's Expressway a dependable reference to enhance and understand traffic safety in ramp areas based on accurate crash prediction models and empirical evidence.

Exposure to Atmospheric Particulates and Associated Respirable Deposition Dose to Street Vendors at the Residential and Commercial Sites in Dehradun City

  • Prabhu, Vignesh;Gupta, Sunil K.;Madhwal, Sandeep;Shridhar, Vijay
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.237-244
    • /
    • 2019
  • Background: Street vendors spend relatively more time near roadways and are vulnerable to air pollution related health disorders. However, there is limited information on the quality of the air they breathe. The objectives of this present study were to calculate the mass concentration of atmospheric particulate matter (PM) in eight size fractions ($PM_{0.4-0.7}$, $PM_{0.7-1.1}$, $PM_{1.1-2.1}$, $PM_{2.1-3.3}$, $PM_{3.3-4.7}$, $PM_{4.7-5.8}$, $PM_{5.8-9.0}$, and $PM_{9.0--0{\mu}m}$) at commercial (CML) and residential site (RSL) in Dehradun city from November 2015 to May 2016. To estimate the corresponding respiratory deposition dose (RDDs) in alveolar (AL), tracheobronchial (TB), and head airway (HD) region on street vendors working at CML and RSL. To find the association of atmospheric PM with RDDs and the incidence of respiratory related disorders among street vendors. Methods: Andersen cascade impactor was employed for calculating the PM mass concentration. Questionnaire based health survey among street vendors were carried out through personal interview. Results: A significant difference (p < 0.05; t-test) between the mean $PM_{0.4-10{\mu}m}$ mass concentration at CML and RSL was observed with ($mean{\pm}SD$) $84.05{\pm}14.5$ and $77.23{\pm}11.7{\mu}g\;m^{-3}$, respectively. RDDs in AL, TB and HD region at CML was observed to be 9.9, 7.8, and 7.3% higher than at RSL, respectively. Health survey revealed 1.62, 0.96, 0.04, and 0.57 times higher incidence of cold, cough, breathlessness, and chest pain, respectively with street vendors at CML compared to RSL. Conclusion: The site characteristics plays a major role in the respiratory health status of street vendors at Dehradun.

Design of Immersive Walking Interaction Using Deep Learning for Virtual Reality Experience Environment of Visually Impaired People (시각 장애인 가상현실 체험 환경을 위한 딥러닝을 활용한 몰입형 보행 상호작용 설계)

  • Oh, Jiseok;Bong, Changyun;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.11-20
    • /
    • 2019
  • In this study, a novel virtual reality (VR) experience environment is proposed for enabling walking adaptation of visually impaired people. The core of proposed VR environment is based on immersive walking interactions and deep learning based braille blocks recognition. To provide a realistic walking experience from the perspective of visually impaired people, a tracker-based walking process is designed for determining the walking state by detecting marching in place, and a controller-based VR white cane is developed that serves as the walking assistance tool for visually impaired people. Additionally, a learning model is developed for conducting comprehensive decision-making by recognizing and responding to braille blocks situated on roads that are followed during the course of directions provided by the VR white cane. Based on the same, a VR application comprising an outdoor urban environment is designed for analyzing the VR walking environment experience. An experimental survey and performance analysis were also conducted for the participants. Obtained results corroborate that the proposed VR walking environment provides a presence of high-level walking experience from the perspective of visually impaired people. Furthermore, the results verify that the proposed learning algorithm and process can recognize braille blocks situated on sidewalks and roadways with high accuracy.

Fusion Strategy on Heterogeneous Information Sources for Improving the Accuracy of Real-Time Traffic Information (실시간 교통정보 정확도 향상을 위한 이질적 교통정보 융합 연구)

  • Kim, Jong-Jin;Chung, Younshik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • In recent, the number of real-time traffic information sources and providers has increased as increasing smartphone users and intelligent transportation system facilities installed at roadways including vehicle detection system (VDS), dedicated short-ranged communications (DSRC), and global positioning system (GPS) probe vehicle. The accuracy of such traffic information would vary with these heterogeneous information sources or spatiotemporal traffic conditions. Therefore, the purpose of this study is to propose an empirical strategy of heterogeneous information fusion to improve the accuracy of real-time traffic information. To carry out this purpose, travel speed data collection based on the floating car technique was conducted on 227 freeway links (or 892.2 km long) and 2,074 national highway links (or 937.0 km long). The average travel speed for 5 probe vehicles on a specific time period and a link was used as a ground truth measure to evaluate the accuracy of real-time heterogeneous traffic information for that time period and that link. From the statistical tests, it was found that the proposed fusion strategy improves the accuracy of real-time traffic information.

Development of a Korean-version Integrated Message Set to Provide Information on Traffic Safety Facilities for Autonomous Vehicles (자율주행 자동차 대응 교통안전시설의 정보 제공을 위한 한국형 통합 메시지 셋 설계 방안 연구)

  • Eunjeong Ko;Hyeokjun Jang;Eum Han;Kitae Jang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.284-298
    • /
    • 2022
  • It is necessary to acquire information on traffic safety facilities installed on the roadways specifically for the operation of autonomous vehicles. The purpose of this study is to prepare a Korean version of an integrated message-set design as a way to provide to autonomous vehicles standardized information on traffic safety facilities. In this study, necessary facilities are classified according to four criteria (no legal basis; not providing information to autonomous vehicles; providing duplicate information; not standardized, and too difficult to generalize) based on information that must be provided to operate autonomous vehicles. The priority of information delivery (gross negligence followed by behavior change) was classified according to the importance of the information to be provided during autonomous driving, and the form was defined for the classification code in the information delivered. Finally, the information location and delivery method of traffic facilities for compliance with SAE J2735 were identified. This study is meaningful in that it provides a plan for roadway operations by suggesting a method for providing information to autonomously driven vehicles.