• 제목/요약/키워드: Road-sensing

검색결과 180건 처리시간 0.021초

Combination of fuzzy models via economic management for city multi-spectral remote sensing nano imagery road target

  • Weihua Luo;Ahmed H. Janabi;Joffin Jose Ponnore;Hanadi Hakami;Hakim AL Garalleh;Riadh Marzouki;Yuanhui Yu;Hamid Assilzadeh
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.531-548
    • /
    • 2024
  • The study focuses on using remote sensing to gather data about the Earth's surface, particularly in urban environments, using satellites and aircraft-mounted sensors. It aims to develop a classification framework for road targets using multi-spectral imagery. By integrating Convolutional Neural Networks (CNNs) with XGBoost, the study seeks to enhance the accuracy and efficiency of road target identification, aiding urban infrastructure management and transportation planning. A novel aspect of the research is the incorporation of quantum sensors, which improve the resolution and sensitivity of the data. The model achieved high predictive accuracy with an MSE of 0.025, R-squared of 0.85, RMSE of 0.158, and MAE of 0.12. The CNN model showed excellent performance in road detection with 92% accuracy, 88% precision, 90% recall, and an f1-score of 89%. These results demonstrate the model's robustness and applicability in real-world urban planning scenarios, further enhanced by data augmentation and early stopping techniques.

연료전지 차량 스택 냉각수 부족 감지 방법에 관한 연구 (A Study on Sensing Method of the Stack Coolant Deficiency for FCEV)

  • 김형국;한수동;남기영;김치명;박용선
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.525-532
    • /
    • 2014
  • The sensing of a stack coolant deficiency is very important in that cooling performance of a fuel cell, overheating prevention of a stack or coolant heater. This paper explains the performance comparison between the coolant contact/noncontact level sensors and coolant deficiency sensing logic using the pressure sensor in a stagnant or circulating flow. Throughout the comparison, the pressure sensor is more suitable than the other sensors in terms of the precision, fast response, sensing frequency. After the experiment, the pressure sensor is equipped to an FCEV(Fuel Cell Electric Vehicle) to verify sensing definitely. There was no miss-sensing using pressure sensor while FCEV runs in the conditions of the paved road and cross country road.

A Novel Road Segmentation Technique from Orthophotos Using Deep Convolutional Autoencoders

  • Sameen, Maher Ibrahim;Pradhan, Biswajeet
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.423-436
    • /
    • 2017
  • This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the model outputs GIS-ready data that could be useful for various applications. The optimization of the model's parameters is explained which was conducted via grid search method. The model was trained and implemented in Keras, a high-level deep learning framework run on top of Tensorflow. The results show that the proposed model with the best-obtained hyperparameters could segment road objects from orthophotos at an average accuracy of 88.5%. The results of optimization revealed that the best optimization algorithm and activation function for the studied task are Stochastic Gradient Descent (SGD) and Exponential Linear Unit (ELU), respectively. In addition, the best numbers of convolutional filters were found to be 8 for the first and second layers and 128 for the third and fourth layers of the proposed network architecture. Moreover, the analysis on the time complexity of the model showed that the model could be trained in 4 hours and 50 minutes on 1024 high-resolution images of size $106{\times}106pixels$, and segment road objects from similar size and resolution images in around 14 minutes. The results show that the deep learning models such as Convolutional Autoencoders could be a best alternative to traditional machine learning models for road segmentation from aerial photographs.

객체기반 도로모델을 이용한 고해상도 위성영상에서의 도로 추출 (Road Extraction from High Resolution Satellite Image Using Object-based Road Model)

  • 변영기;한유경;채태병
    • 대한원격탐사학회지
    • /
    • 제27권4호
    • /
    • pp.421-433
    • /
    • 2011
  • 도시 정보시스템 및 위치기반 서비스와 같은 공간정보 분야의 빠른 성장으로 인해 도심지 도로정보 취득 및 갱신에 대한 중요성이 날로 증가하고 있다. 본 연구에서는 고해상도 위성영상으로부터 도로 정보를 추출하기 위하여 최근 화소기반분석의 대안으로 주목을 받고 있는 객체기반 접근법을 이용한 자동 도로추출 방법을 제안한다. 이를 위해 우선 MSRG(Modified Seeded Region Growing)기법을 이용하여 공간객체를 생성한 후, 객체의 형상 특정정보와 인접성을 기반으로 핵심 도로 객체를 자동으로 추출하였다. 또한 추출된 핵심도로 객체와 인접한 객체들과의 공간적 상관성을 이용하여 일부 누락된 도로객체를 추적하였다. 최종적으로 도로의 기하학적인 특성을 이용한 단절된 도로 구간 연결 및 도로 변형 개선 과정을 통하여 최종도로영역을 추출하였다. 제안 기법의 성능 검증을 위한 정량적 평가 결과, 도로영역에 대해 높은 탐지정확도를 보임을 확인하였다. 결과적으로 제안된 방법은 고해상도 위성영상의 도로추출에 유용하게 적용될 수 있으리라 판단된다.

스테레오 비전센서를 이용한 차선감지 시스템 연구 (A Study on Lane Sensing System Using Stereo Vision Sensors)

  • 하건수;박재식;이광운;박재학
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.230-237
    • /
    • 2004
  • Lane Sensing techniques based on vision sensors are regarded promising because they require little infrastructure on the highway except clear lane markers. However, they require more intelligent processing algorithms in vehicles to generate the previewed roadway from the vision images. In this paper, a lane sensing algorithm using vision sensors is developed to improve the sensing robustness. The parallel stereo-camera is utilized to regenerate the 3-dimensional road geometry. The lane geometry models are derived such that their parameters represent the road curvature, lateral offset and heading angle, respectively. The parameters of the lane geometry models are estimated by the Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from the image plane to the global coordinate considers roll and pitch motions of a vehicle so that the mapping error is minimized during acceleration, braking or steering. The proposed sensing system has been built and implemented on a 1/10-scale model car.

Directional texture information for connecting road segments in high spatial resolution satellite images

  • Lee, Jong-Yeol
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.245-245
    • /
    • 2005
  • This paper addresses the use of directional textural information for connecting road segments. In urban scene, some roads are occluded by buildings, casting shadow of buildings, trees, and cars on streets. Automatic extraction of road network from remotely sensed high resolution imagery is generally hindered by them. The results of automatic road network extraction will be incomplete. To overcome this problem, several perceptual grouping algorithms are often used based on similarity, proximity, continuation, and symmetry. Roads have directions and are connected to adjacent roads with certain angles. The directional information is used to guide road fragments connection based on roads directional inertia or characteristics of road junctions. In the primitive stage, roads are extracted with textural and direction information automatically with certain length of linearity. The primitive road fragments are connected based on the directional information to improve the road network. Experimental results show some contribution of this approach for completing road network, specifically in urban area.

  • PDF

센서 구성을 고려한 비전 기반 차선 감지 시스템 개발 (Development of A Vision-based Lane Detection System with Considering Sensor Configuration Aspect)

  • 박재학;홍대건;허건수;박장현;조동일
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.97-104
    • /
    • 2005
  • Vision-based lane sensing systems require accurate and robust sensing performance in lane detection. Besides, there exists trade-off between the computational burden and processor cost, which should be considered for implementing the systems in passenger cars. In this paper, a stereo vision-based lane detection system is developed with considering sensor configuration aspects. An inverse perspective mapping method is formulated based on the relative correspondence between the left and right cameras so that the 3-dimensional road geometry can be reconstructed in a robust manner. A new monitoring model for estimating the road geometry parameters is constructed to reduce the number of the measured signals. The selection of the sensor configuration and specifications is investigated by utilizing the characteristics of standard highways. Based on the sensor configurations, it is shown that appropriate sensing region on the camera image coordinate can be determined. The proposed system is implemented on a passenger car and verified experimentally.

AUTOMATIC ROAD NETWORK EXTRACTION. USING LIDAR RANGE AND INTENSITY DATA

  • Kim, Moon-Gie;Cho, Woo-Sug
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.79-82
    • /
    • 2005
  • Recently the necessity of road data is still being increased in industrial society, so there are many repairing and new constructions of roads at many areas. According to the development of government, city and region, the update and acquisition of road data for GIS (Geographical Information System) is very necessary. In this study, the fusion method with range data(3D Ground Coordinate System Data) and Intensity data in stand alone LiDAR data is used for road extraction and then digital image processing method is applicable. Up to date Intensity data of LiDAR is being studied. This study shows the possibility method for road extraction using Intensity data. Intensity and Range data are acquired at the same time. Therefore LiDAR does not have problems of multi-sensor data fusion method. Also the advantage of intensity data is already geocoded, same scale of real world and can make ortho-photo. Lastly, analysis of quantitative and quality is showed with extracted road image which compare with I: 1,000 digital map.

  • PDF

Local Detection of Road Using Mathematical Morphology On Airborne SAR Image

  • Yang, Jin-Hyun;Moon, Wooil-M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.17-22
    • /
    • 2002
  • This paper is concerned with a local detection of road on an airborne SAR image. The roads can be characterized by their geometry and radiometry. Roads are assumed as linear, thin, and elongated objects that are darker than their surroundings on an airborne SAR image. With these assumptions, a series of morphological filters are applied and tested successively. This approach is simple and almost non parametric and has been successfully applied to an airborne SAR image.

  • PDF

Road Centerline Tracking From High Resolution Satellite Imagery By Least Squares Templates Matching

  • Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.34-39
    • /
    • 2002
  • Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.

  • PDF