• 제목/요약/키워드: Road vibration

검색결과 599건 처리시간 0.03초

차량통행으로 발생하는 도로진동의 전파특성 (Propagation Characteristics of Road Vibration Generated from Vehicles)

  • 박준철;유승도;신동석;이정희;설증민
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.25-32
    • /
    • 1999
  • Ground vibrations induced from road were investigated to get the basic data that can be used to prepare countermeasures for environmental vibration problems. Vibration levels were measured simultaneously at three points in double distances from road. These data were analyzed with the type of vehicles. roads, media to understand the magnitudes and characteristics of distance attenuation of road vibrations. Vibration levels recorded on tapes were analyzed to understand the characteristics of frequency of road vibration. The range which could be influenced by the road vibration was estimated to take into account the mean of$L_{max}$ and distance attenuation of vibration level 5 m from roadside.

  • PDF

주행시험에 의한 대형 트럭의 주행진동 특성 분석 (Vibration Analysis of a Heavy Truck via Road Tests)

  • 송오섭;남경모
    • 한국군사과학기술학회지
    • /
    • 제12권3호
    • /
    • pp.266-271
    • /
    • 2009
  • Electronic equipments and a missile carried by heavy trucks are often subjected to vibration and shock excitation during their transportation. Electronic equipments are so vulnerable to vibration and shock input that it is necessary to know in advance the vibration level of the truck which cause the damage of equipments. Road tests of a heavy truck carrying a canister on different road conditions such as paved road, unpaved road, and washboard are performed and the effect of road conditions on the vibration characteristics are analyzed. Vibration levels were measured at various locations of the truck along the path through which vibration was transmitted. This study reveals that the velocity of the truck as well as the road surface conditions are main factors which affect the vibration levels of the truck. The power spectrum density of the measured vibration signal and the factors affecting the PSD are also analyzed in this paper.

승용차 운전자의 전신진동노출에 대한 피로-감소숙달 경계 (Fatigue-Decreased Proficiency(FDP) Boundary for Whole-Body Vibration Exposure in Passenger Car Driver)

  • 정재열;이기남
    • 동의생리병리학회지
    • /
    • 제16권6호
    • /
    • pp.1211-1216
    • /
    • 2002
  • To evaluate whole-body vibration(WBV) exposure and fatigue-decreased proficiency(FDP) boundary in passenger car driver, several roads in Busan were divided into 3 types by the condition of road surface; Road 1 was partially damaged, Road 2 was normal without damage, and Road 3 was better than Road 2. The results were following: The highest passenger driver's exposures to whole-body vibration acceleration and fatigue-decreased proficiency boundary at 40km/h were 0.108m/s² and about 2099 minutes in Road 2 for xh axis, 0.134m/s² and about 1585 minutes in Road 2 for yh axis, and 0.183m/s² and about 1053 minutes in Road 2 for zh axis, respectively. The highest passenger driver's exposures to whole-body vibration acceleration and fatigue-decreased proficiency boundary at 80km/h were 0.219m/s² and about 830 minutes in Road 3 xh axis, 0.203m/s² and about 918 minutes in Road 3 for yh axis, and 0.622m/s² and about 195 minutes in Road 1 for zh axis, respectively. The highest vector sums of whole-body vibration exposure at 40km/h and 804km/h were 0.328m/s² in Road 2 and 0.730m/s² in Road 1, respectively. The highest crest factors at 40km/h were 4.25 in Road 1 for xh, 4.51 in Road 3 for yh, and 5.81 in Road 2 for zh, respectively. The highest crest factors at 80km/h were 5.57 in Road 1 for xh, 5.60 in Road 2 for yh, and 6.46 in Road 3 for zh, respectively. The highest transmissibilities of whole-body vibration from floor to seat at 40km/h and 80km/h were 0.89 in Road 3 and 0.82 in Road 3 for xh axis, 0.83 in Road 3 and 0.87 in Road 1 and 2 for yh, and 0.80 in Road 2 and 0.92 in Road 1 tor zh axis, respectively. The highest fatigue-decreased proficiency boundaries for whole-body vibration exposure of passenger car driver in floor and seat were 457 minutes in Road 3 and 583 minutes in Road 3 at 40km/h and 159 minutes in Road 2 and 251 minutes in Road 2 at 80km/h, respectively.

유한요소법 및 실험을 이용한 트럭 탑재 특수 장비의 주행진동 해석 (Analysis of Transportation Vibration for Truck-Mounted Special Equipments via FEM and Experiments)

  • 송오섭;이학렬
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1083-1091
    • /
    • 2009
  • Modern military equipments are tend to be mounted on a movable truck for their survivability and operation performance. Special units and electronic equipments installed on the truck experience the vibration caused by road roughness during their transport. The level of the transportation vibration is affected by both road conditions and vehicle speeds. In this paper, various experiments on the vibration characteristics of the equipment are carried out via road tests. Transportation vibration is also investigated by numerical analysis using FEM, and natural frequencies and random responses of the launcher are obtained. The PSD and RMS values of acceleration of the equipment are predicted and compared with test results.

도로 노면 조건을 고려한 차량 엔진 주변 부품의 피로손상도 분석 (Analysis of Fatigue Damage of the parts around the vehicle engine with Respect to Road surface conditions)

  • 신성영;김찬중;이봉현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.581-586
    • /
    • 2014
  • In general vibration test considers both harmonic vibration and random vibration, When developing the vehicle component. But the effect of harmonic vibration is larger in the parts around the vehicle engine, sole testing the harmonic vibration is considered. In this study, the fatigue damage of the linear system fixed around the engine is analyzed when the effect of random vibration is higher, harsher than the normal road surface condition. In condition the vehicle speed and the engine RPM are similar, the higher the harshness of the road surface condition is, the larger the fatigue damage level is. Therefore both random vibration and harmonic vibration must be considered in vibration test of components around the engine. Proposing the sine on random(SOR) vibration test that can exam considering both of vibrations, harmonic and random.

  • PDF

터널발파 진동이 도로상부에 미치는 영향 분석 (A Study on the Effect of Blasting Vibration on the road)

  • 김낙영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.821-822
    • /
    • 2014
  • When performing the tunnel excavation blasting, the lower road structure can cause the damage of the structure caused by blasting vibration. In this case the existing structurel meet all of the static and the dynamic stability. But in the domestic management of building structures is presented vibration and is the only criteria, and the criteria for major civil engineering structures insufficient research situation. This study examined the influence of the road structure according to the blast vibration by utilizing the numerical analysis.

  • PDF

건물을 통과하는 도로의 방진설계 연구 (A Study on the Vibration Isolation Design of Road Passing through Building)

  • 맹주원;권태철;이성춘;홍갑표
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.760-765
    • /
    • 2003
  • This study is performed in order to determine a method to solve vibration-borne problems by isolating the vibration that is generated by vehicles in case a road passes through a building and also to verify its applicability and effect both theoretically and experimentally.

  • PDF

Vibration of vehicle-bridge coupling system with measured correlated road surface roughness

  • Han, Wanshui;Yuan, Sujing;Ma, Lin
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.315-331
    • /
    • 2014
  • The present study investigated the effect of the correlation of the measured road roughness profiles corresponding to the left and right wheels of a vehicle on the vibration of a vehicle-bridge coupling system. Four sets of road roughness profiles were measured by a laser road-testing vehicle. A correlation analysis was carried out on the four roughness samples, and two samples with the strongest correlation and weakest correlation were selected for the power spectral density, autocorrelation and cross-correlation analyses. The scenario of a three-axle truck moving across a rigid-frame arch bridge was used as an example. The two selected road roughness profiles were used as inputs to the vehicle-bridge coupling system. Three different input modes were adopted in the numerical analysis: (1) using the measured road roughness profile of the left wheel for the input of both wheels in the numerical simulation; (2) using the measured road roughness profile of the right wheel for both wheels; and (3) using the measured road roughness profiles corresponding to left and right wheels for the input corresponding to the vehicle's left and right wheels, respectively. The influence of the three input modes on the vibration of the vehicle-bridge system was analyzed and compared in detail. The results show that the correlation of the road roughness profiles corresponding to left and right wheels and the selected roughness input mode both have a significant influence on the vibration of the vehicle-bridge coupling system.

복합신소재 도로구조물의 변환단면이 고유진동수에 미치는 영향 (The Effects of Different Cross Section on Natural Frequency of the Advanced Composite Materials Road Structures)

  • 한봉구
    • 한국도로학회논문집
    • /
    • 제15권3호
    • /
    • pp.23-29
    • /
    • 2013
  • PURPOSES: This paper aims to give a guideline and the way to apply the advanced composite materials theory to the road structures with different cross sections to the practicing engineers. METHODS: To simple but exact method of calculating natural frequencies corresponding to the modes of vibration of road structures with different cross sections and arbitrary boundary conditions. The effect of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. RESULTS: Simple method of vibration analysis for calculating the natural frequency of the different cross sections is presented. CONCLUSIONS: Simple method of vibration analysis for calculating the natural frequency of the different cross sections is presented. This method is a simple but exact method of calculating natural frequencies of the road structures with different cross sections. This method is extended to be applied to two dimensional problems including composite laminated road structures.

군용차량 주행 진동응답 분석 (Vibration Response Analysis of the Military Vehicle by Road Test)

  • 신동준;이종학;강영식;최지호;강동석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.262-266
    • /
    • 2014
  • Military vehicle equipped with an antenna and a shelter for operating radar has a vibration exposure during driving time. This vibration would have influence on structure of military vehicle critically. In this paper, driving stability of the military vehicle is obtained through the vibration response analysis. And, vibration level of the military vehicle satisfied the military vibration specification through analysis and comparing the MIL-STD-810G. PSD and Grms data obtained by road test can be used for vibration test specification of cabinets and electronic equipment in shelter.

  • PDF