• Title/Summary/Keyword: Road use efficiency

Search Result 115, Processing Time 0.027 seconds

An Experimental Study on NOX Reduction in a Diesel Engine with Cold EGR (Cold EGR 장착 디젤엔진에서의 NOx 저감에 관한 실험적 연구)

  • Chauhana, Bhupendra Singh;Kumar, Naveen;Jun, Yong-Du
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.769-772
    • /
    • 2010
  • The objective of the current research work is to investigate the usage of biodiesel combined with the use of EGR in order to reduce the emission of all regulated pollutants from diesel engines. A single cylinder, air cooled, constant speed direct injection diesel engine was used for the experimental work and a cold EGR system was developed and fitted to the engine. Concentrations of HCs, NOx, and CO from the exhaust gas along with the smoke opacity were measured. Engine performance parameters such as the brake thermal efficiency (BTE) and the brake specific energy consumption (BSEC) were also calculated from the measured data. The results from the present investigation suggest that 25-30% EGR rate could give excellent NOx reduction without any significance penalty on smoke opacity or BSEC under the engine load of up to 40%. Under the full load condition, 15% EGR rate was found to be an option while higher EGR rate resulted in inferior performance and heavy smoke.

  • PDF

Blockchain-Assisted Trust Management Scheme for Securing VANETs

  • Ahmed, Waheeb;Wu, Di;Mukathie, Daniel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.609-631
    • /
    • 2022
  • The main goal of VANETs is to improve the safety of all road users. Therefore, the accuracy and trustworthiness of messages transmitted in VANETs are essential, given that life may rely on them. VANETs are provided with basic security services through the use of public key infrastructure-based authentication. However, the trust of users is still an open issue in VANETs. It is important to prevent bogus message attacks from internal vehicles as well as protect vehicle privacy. In this paper, we propose a trust management scheme that ensures trust in VANETs while maintaining vehicle privacy. The trust scheme establishes trust between vehicles where a trust value is assigned to every vehicle based on its behavior and messages are accepted only from vehicles whose trust value is greater than a threshold, therefore, protecting VANETs from malicious vehicles and eliminating bogus messages. If a traffic event happens, vehicles upload event messages to the reachable roadside unit (RSU). Once the RSU has confirmed that the event happened, it announces the event to vehicles in its vicinity and records it into the blockchain. Using this mechanism, RSUs are prevented from sending fake or unverified event notifications. Simulations are carried out in the context of bogus message attacks to evaluate the trust scheme's reliability and efficiency. The results of the simulation indicate that the proposed scheme outperforms the compared schemes and is highly resistant to bogus message attacks.

Determining Behavioral Intention of Logistic and Distribution Firms to Use Electric Vehicles in Thailand

  • Somsit DUANGEKANONG
    • Journal of Distribution Science
    • /
    • v.21 no.5
    • /
    • pp.31-41
    • /
    • 2023
  • Purpose: Electric vehicle (EV) technology started in 2015 in Thailand. The Thai Government has indicated that 30% of all cars produced in Thailand by 2025 will be EVs. Using EVs in Thailand will reduce road pollution and increase energy efficiency, especially in major cities. Hence, the adoption of EVs in the country has been promoted. This study pointed out that social influence, facilitating conditions, perceived enjoyment, environmental concern, attitude, and perceived behavioral control are key factors affecting the behavioral intention to adopt EVs among logistic and distribution firms in Thailand. Research design, data, and methodology: 500 top management, middle management and purchasing managers of logistic and distribution firms in Thailand are surveyed. The study employed judgmental, convenience, and snowball sampling. Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM) are the main statistical tools for data analysis. Results: The results show that all determinants impact customers' willingness to adopt EVs, except perceived enjoyment and environmental control. Conclusions: The study proposes to promote the incentives by decreasing electricity prices and endorsing EVs purchase to accelerate the adoption of EVs in Thailand. Therefore, future policies should focus on behavioral intention toward EVs amongst logistic and distribution firms for enhancing the future of mobility in Thailand.

A Study on Technology Priorities for Green Highway (녹색도로 구현을 위한 기술 우선순위 결정에 관한 연구)

  • Lee, Yu-Hwa;Cho, Won-Bum;Kim, Se-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.151-162
    • /
    • 2012
  • It is not surprising to hear news about irresistible natural disasters all over the world due to climate change. Korean Government has focused on developing a variety of green technologies to reduce green house gasses, in particular, carbon dioxide. This study suggested 18 technology divisions for achieving green highway technology development in six different sub-sectors considering life-cycle of roadway and surveyed 29 highway and/or transportation professionals of three institutes using AHP(Analytical Hierarchy Process) analysis to construct "Green Highway"and realize carbon emission reductions and energy use efficiency in a road sector in Korea. Expert Choice Software was used to rank 18 technology divisions weighted by two-level choices. Transport Operating Infrastructure Improvement, Roadway Policy Implementation, Green Transportation(such as Pedestrian and Bicycle) were highly ranked by respondents according to results of the AHP modeling. Among the 18 divisions, technology policy for supporting R&D investments from development to commercialization was ranked as the most significant one to be focused. Green Transportation Facility Design/Construction/Operation and Eco-Friendly Roadway Plan were followed as expected since professionals have thought that the planning/design step of the life-cycle is a starting point to reduce carbon dioxide from roads more and more. Additionally, comparing the results with the Government investment trend 2006-2011 for the roads, it can be interpreted that the Government should invest to the R&D area more widely than before to promote element and core technology development for Green Highway Construction. Above all, small and mid-sized businesses have to be invested as well as encouraged to undertake green highwayrelated objects to accomplish the divisions which ranked high.

An Analysis on Signal Control Efficiency in a Three-Leg Intersection Adopting Pedestrian Push-Button System Following Pedestrian volume (3지 교차로에서 보행자 교통량에 따른 보행자작동신호기를 이용한 신호제어효율에 관한 분석)

  • Kim, Eung-Cheol;Cho, Han-Seon;Jung, Dong-Woo;Kim, Hyoung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • This study has proposed the signal operating system to use both semi-actuated signal control and pedestrian push-button as a way to make up for the problems of 3 leg intersections which are operated inefficiently in the signal operation, one of the methods of traffic operations. In case of the semi-actuated signal control, it can reduce delay inside the intersection by serving to uncongested traffic on the main road where there is not much traffic volume on the secondary road and push-button signal can reduce unnecessary waiting time it could happen to vehicles by operating it though there is no pedestrian. Quantitative analysis was tried regarding the average delay reduction per vehicle using VISSIM, microscopic simulation program regarding how much effect it has compared with the existing signal control system and semi-actuated signal control system when the above two advantages are collected. The field test was performed for one three-leg intersection of Incheon. According to respectively signal control method pedestrian traffic changed and executed a sensitivity analysis. The result which compares the average delay time per a vehicle of scenarios, the signal control method of using the pedestrian push-button system in comparison with the fixed signal control method showed to decrease effect of a minimum 3.7 second (10%), a maximum 5.8 second (16%). When the pedestrian traffic volume was 20% or less of the measurement traffic volume, The signal control method of using the pedestrian push-button system appeared to be more efficient the semi-actuated signal control with object intersection.

  • PDF

Development of Linking & Management System for High-Resolution Raw Geo-spatial Data based on the Point Cloud DB (Point Cloud 기반의 고해상도 원시데이터 연계 및 관리시스템 개발)

  • KIM, Jae-Hak;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.132-144
    • /
    • 2018
  • 3D Geo-spatial information models have been widely used in the field of Civil Engineering, Medical, Computer Graphics, Urban Management and many other. Especially, in surveying and geo-spatial field, the demand for high quality 3D geospatial information and indoor spatial information is so highly increasing. However, it is so difficult to provide a low-cost and high efficiency service to the field which demand the highest quality of 3D model, because pre-constructed spatial data are composed of different formats and storage structures according to the application purpose of each institutes. In fact, the techniques to construct a high applicable 3D geo-spatial model is very expensive to collect and analyze geo-spatial data, but most demanders of 3D geo-spatial model never want to pay the high-cost to that. This study, therefore, suggest the effective way to construct 3D geo-spatial model with low-cost of construction. In general, the effective way to reduce the cost of constructing 3D geo-spatial model as presented in previous studies is to combine the raw data obtained from point cloud observatory and UAV imagery, however this method has some limitation of usage from difficulties to approve the use of raw data because of those have been managed separately by various institutes. To solve this problem, we developed the linking & management system for unifying a high-Resolution raw geo-spatial data based on the point cloud DB and apply this system to extract the basic database from 3D geo-spatial mode for the road database registration. As a result of this study, it can be provided six contents of main entries for road registration by applying the developed system based on the point cloud DB.

Bicycle Riding-State Recognition Using 3-Axis Accelerometer (3축 가속도센서를 이용한 자전거의 주행 상황 인식 기술 개발)

  • Choi, Jung-Hwan;Yang, Yoon-Seok;Ru, Mun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.63-70
    • /
    • 2011
  • A bicycle is different from vehicles in the structure that a rider is fully exposed to the surrounding environment. Therefore, it needs to make use of prior information about local weather, air quality, trail road condition. Moreover, since it depends on human power for moving, it should acquire route property such as hill slope, winding, and road surface to improve its efficiency in everyday use. Recent mobile applications which are to be used during bicycle riding let us aware of the necessity of development of intelligent bicycles. This study aims to develop a riding state (up-hill, down-hill, accelerating, braking) recognition algorithm using a low-power wrist watch type embedded system which has 3-axis accelerometer and wireless communication capability. The developed algorithm was applied to 19 experimental riding data and showed more than 95% of correct recognition over 83.3% of the total dataset. The altitude and temperature sensor also in the embedded system mounted on the bicycle is being used to improve the accuracy of the algorithm. The developed riding state recognition algorithm is expected to be a platform technology for intelligent bicycle interface system.

Current Status and Environment-Friendly Development Policy of Urban Riverfront in Korea on the Basis of It's Locatioanal Property (도시 수변공간의 활용 실태와 입지적 특성을 반영한 친환경적 수변 도시개발 방안)

  • Kim, Hang-Jib
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.449-460
    • /
    • 2012
  • Since 1970's, the rivers in industrial cities and metropolitan cities in Korea have been severely contaminated and the riverfronts have been to garbage yard, warehouses and sanitary facilities that produce low efficiency in urban land-use. As a result, riverfront in most cities became lost space and artificial area which composed of asphalt road, concrete riverbank and parking lot. However, Sustainable management is the main concept of riverfront development in 21st century. Also, in contemporary riverfront space, it is the pivotal paradigm that the development of eco-space and mixture of cultural space. Citizen require greener, more ecological and water-friendly space in riverfront of city. So, the purpose of this paper lies in suggestion for building sustainable development and management for riverfront in Korean city. For this purpose, this paper has reviewed the developmental trend of recent riverfront, has analyzed locational environment and land use of riverfront in city, has set policy and the strategy for sustainable riverfront.

Usefulness of Drones in the Urban Delivery System: Solving the Vehicle and Drone Routing Problem with Time Window (배송 네트워크에서 드론의 유용성 검증: 차량과 드론을 혼용한 배송 네트워크의 경로계획)

  • Chung, Yerim;Park, Taejoon;Min, Yunhong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.3
    • /
    • pp.75-96
    • /
    • 2016
  • This paper investigates the usefulness of drones in an urban delivery system. We define the vehicle and drone routing problem with time window (VDRPTW) and present a model that can describe a dual mode delivery system consisting of drones and vehicles in the metropolitan area. Drones are relatively free from traffic congestion but have limited flight range and capacity. Vehicles are not free from traffic congestion, and the complexity of urban road network reduces the efficiency of vehicles. Using drones and vehicles together can reduce inefficiency of the urban delivery system because of their complementary cooperation. In this paper, we assume that drones operate in a point-to-point manner between the depot and customers, and that customers in the need of fast delivery are willing to pay additional charges. For the experiment datasets, we use instances of Solomon (1987), which are well known in the Vehicle Routing Problem society. Moreover, to mirror the urban logistics demand trend, customers who want fast delivery are added to the Solomon's instances. We propose a hybrid evolutionary algorithm for solving VDRPTW. The experiment results provide different useful insights according to the geographical distributions of customers. In the instances where customers are randomly located and in instances where some customers are randomly located while others form some clusters, the dual mode delivery system displays lower total cost and higher customer satisfaction. In instances with clustered customers, the dual mode delivery system exhibits narrow competition for the total cost with the delivery system that uses only vehicles. In this case, using drones and vehicles together can reduce the level of dissatisfaction of customers who take their cargo over the time-window. From the view point of strategic flexibility, the dual mode delivery system appears to be more interesting. In meeting the objective of maximizing customer satisfaction, the use of drones and vehicles incurs less cost and requires fewer resources.

Urban Tissue, Zoning and Achieved Floor Area Ratio (A-FAR) - Focused on Developed Floor Area Ratio (D-FAR) Compared to the Legal Floor Area Ratio (L-FAR) in Residential Area and Commercial Area in Seoul - (용적실현비(A-FAR)에 영향을 미치는 용도지역별 대지특성에 대한 분석 - 서울시 주거지역 및 상업지역에서 법정용적률(L-FAR) 대비 실현된 용적률(D-FAR)을 중심으로 -)

  • Kim, Soo Hyun;Choi, Chang Gyu
    • Journal of Korea Planning Association
    • /
    • v.54 no.2
    • /
    • pp.33-45
    • /
    • 2019
  • The Legal Floor Area Ratio (L-FAR) has been used as a major urban planning tool for efficient management of land use, landscape, and density. The Developed Floor Area Ratio (D-FAR) in each parcel is realized by such physical and institutional factors as urban tissue, local characteristics, and zoning with the L-FAR. The Achieved Floor Area Ratio (A-FAR), the ratio of the D-FAR to the L-FAR, is the relationship between realized density and the intended/desired outcomes of the regulations. The A-FAR informs the efficiency of L-FAR and its effect on parcels, and is an indicator of the demands of real estate developments under the zoning regulation. This study used detailed data of each parcel's characteristics, including parcel size, road width, and the number of roads bordered by a parcel, to identify the influencing factors on A-FAR. This analysis confirmed that the parcel size has a non-linear negative effect in the residential zone but a linear positive effect on A-FAR in the commercial zone. The width of the parcel's frontage in the commercial zone has a positive effect on the value, while in the residential zone the narrower width has higher A-FAR. In Seoul, the residential zone has higher A-FAR than the commercial zone, which means that the former has a relatively higher development pressure but a lower designated L-FAR. This result reflects that Seoul's residential zone absorbs the demand of commercial uses because of the significant permitting of mixed land use and has high-density residential buildings.