• Title/Summary/Keyword: Road plane estimation

Search Result 9, Processing Time 0.023 seconds

Ground Plane Detection Using Homography Matrix (호모그래피행렬을 이용한 노면검출)

  • Lee, Ki-Yong;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.983-988
    • /
    • 2011
  • This paper presents a robust method for ground plane detection in vision-based applications based on a monocular sequence of images with a non-stationary camera. The proposed method, which is based on the reliable estimation of the homography between two frames taken from the sequence, aims at designing a practical system to detect road surface from traffic scenes. The homography is computed using a feature matching approach, which often gives rise to inaccurate matches or undesirable matches from out of the ground plane. Hence, the proposed homography estimation minimizes the effects from erroneous feature matching by the evaluation of the difference between the predicted and the observed matrices. The method is successfully demonstrated for the detection of road surface performed on experiments to fill an information void area taken place from geometric transformation applied to captured images by an in-vehicle camera system.

A Development of the Operating Speed Estimation Model of Truck on Four-lane Rural Highway (지방부 일반국도 4차로의 화물차 주행속도 예측모형 개발)

  • Park, Min Ho;Lee, Geun Hee
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.173-182
    • /
    • 2014
  • PURPOSES : The purpose of the study is to a) explore the operating speed of trucks on rural highways affected by road geometry, and thereby b) develop a predictive model for the operating speed of trucks on rural highways. METHODS : Considering that most of the existing studies have focused on cars, the current study aimed to predict the operating speed of trucks by conducting linear regression analysis on the speed data of trucks operating on the linear-curved-linear portions of the road as a single set. RESULTS : The operating speed in the plane curve portion increased with the length of the curve, and decreased with a lower vertical grade and a smaller curve radius. In the straight plane portion, the operating speed increased with a larger curve radius(upstream), and decreased with an increase in the change of the vertical grade, depending on the length of the vertical curve. CONCLUSIONS : This study developed estimation models of truck for operational speed and evaluated the degree of safety for horizontal and vertical alignments simultaneous. In order to represent whole area of the rural highway, the models should be ew-analyzed with vast data related with road alignment factor in the near future.

Vehicle Platooning Remote Control via State Estimation in a Communication Network (통신 네트워크에서 상태 추정에 의한 군집병합의 원격제어)

  • 황태현;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.192-192
    • /
    • 2000
  • In this paper, a platoon merging is considered as a remote-controlled system with the state represented by a stochastic process. In this system, it becomes to encounter situations where a single decision maker controls a large number of subsystems, and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike classical estimation problem in which the observation is a continuous process corrupted by additive noise, there is a constraint that the observation must be coded and transmitted over a digital communication channel with finite capaci쇼. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. Using the coder-estimator sequence, the remote control station designs a feedback controller. In this paper, we introduce a stochastic model for the lead vehicle in a platoon of vehicles considering the angle between a road surface and a horizontal plane as a stochastic process. The simulation results show that the inter-vehicle distance and the deviation from the desired inter-vehicle distance are well regulated.

  • PDF

The estimation of camera calibration parameters using the properties of vanishing point at the paved and unpaved road (무한원점의 성질을 이용한 포장 및 비포장 도로에서의 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Jeong, Myeong-Hee;Rho, Do-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.178-180
    • /
    • 2006
  • In general, camera calibration has to be gone ahead necessarily to estimate a position and an orientation of the object exactly using a camera. Autonomous land system in order to run a vehicle autonomously needs a camera calibration method appling a camera and various road environment. Camera calibration is to prescribe the confrontation relation between third dimension space and the image plane. It means to find camera calibration parameters. Camera calibration parameters using the paved road and the unpaved road are estimated. The proposed algorithm has been detected through the image processing after obtaining the paved road and the unpaved road. There is able to detect easily edges because the road lanes exist in the raved road. Image processing method is two. One is a method on the paved road. Image is segmentalized using open, dilation, and erosion. The other is a method on the unpaved road. Edges are detected using blur and sharpening. So it has been made use of Hough transformation in order to detect the correct straight line because it has less error than least-square method. In addition to, this thesis has been used vanishing point' principle. an algorithm suggests camera calibration method using Hough transformation and vanishing point. When the algorithm was applied, the result of focal length was about 10.7[mm] and RMS errors of rotation were 0.10913 and 0.11476 ranges. these have the stabilized ranges comparatively. This shows that this algorithm can be applied to camera calibration on the raved and unpaved road.

  • PDF

Superpixel-based Vehicle Detection using Plane Normal Vector in Dispar ity Space

  • Seo, Jeonghyun;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1003-1013
    • /
    • 2016
  • This paper proposes a framework of superpixel-based vehicle detection method using plane normal vector in disparity space. We utilize two common factors for detecting vehicles: Hypothesis Generation (HG) and Hypothesis Verification (HV). At the stage of HG, we set the regions of interest (ROI) by estimating the lane, and track them to reduce computational cost of the overall processes. The image is then divided into compact superpixels, each of which is viewed as a plane composed of the normal vector in disparity space. After that, the representative normal vector is computed at a superpixel-level, which alleviates the well-known problems of conventional color-based and depth-based approaches. Based on the assumption that the central-bottom of the input image is always on the navigable region, the road and obstacle candidates are simultaneously extracted by the plane normal vectors obtained from K-means algorithm. At the stage of HV, the separated obstacle candidates are verified by employing HOG and SVM as for a feature and classifying function, respectively. To achieve this, we trained SVM classifier by HOG features of KITTI training dataset. The experimental results demonstrate that the proposed vehicle detection system outperforms the conventional HOG-based methods qualitatively and quantitatively.

State Estimation and Control in a Network for Vehicle Platooning Control (차량 군집주행을 위한 제어 네트워크의 변수 추정 및 제어)

  • Choi, Jae-Weon;Fang, Tae-Hyun;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.659-665
    • /
    • 2000
  • In this paper a platoon merging control system is considered as a remotely located system with state represented by a stochastic process. in the system it is common to encounter situations where a single decision maker controls a large number of subsystems and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike a classical estimation problem where the observation is a continuous process corrupted by additive noise there is a constraint that the observation must be coded and transmitted over a digital communication channel with fintie capacity. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. in this paper we introduce a stochastic model for the lead vehicle in a platoon of vehicles in a lane considering the angle between the road surface and a horizontal plane as a stochastic process. In order to merge two platoons the lead vehicle of the following platoon is controlled by a remote control station. Using the observation transmitted over communication channel the remote control station designs the feedback controller. The simulation results show that the intervehicle spacings and the deviations from the desired intervehicle spacing are well regulated.

  • PDF

An User-Friendly Method of Image Warping for Traffic Monitoring System (실시간 교통상황 모니터링 시스템을 위한 유저 친화적인 영상 변형 방법)

  • Yi, Chuho;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.231-236
    • /
    • 2016
  • Currently, a traffic monitoring service using a surveillance camera is provided through internet. In general, if the user points a certain location on a map, then this service shows the real-time image of the camera where it is mounted. In this paper, we proposed the intuitive surveillance monitoring system which displays a real-time camera image on the map by warping with bird's-eye view and with the top of image as the north. In order to robustly estimate the road plane using camera image, we used the motion vectors which can be detected to changes in brightness. We applied a re-adjustment process to have the same directivity with a map and presented a user-friendly interface that can be displayed on the map. In the experiment, the proposed method was presented as the result of warping image that the user can easily perceive like a map.

Estimation of the Superelevation Safety Factor Considering Operating Speed at 3-Dimensional Alignment (입체선형의 주행속도를 고려한 편경사 안전율 산정에 관한 연구)

  • Park, Tae-Hoon;Kim, Joong-Hyo;Park, Je-Jin;Park, Ju-Won;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.159-163
    • /
    • 2005
  • The propriety between suppliers and demanders in geometric design is very important. Although the final purpose of constructing roads is to concern about the driver s comfort, unfortunately, it has not been considered so far. We've considered the regularity and quickness in considering driver's comfort but there should be considered the safety for the accident as well. If drivers are appeared to be more speeding than designer's intention, there will be needed some supplements to increase the safety rate for the roads. Even if both an upward and downward section are supposed to exist at the same time for solid geometry of the roads like this, it is true that the recent design for the 3-D solid geometry section has been done as flat 2-D and the minimum plane curve radius and the maximum cant have been decided just by calculating without considering operating speed between an upward and downward section at the same point. In this investigation, thus, I'd like to calculate the safety of the cant by considering the speed features of the solid geometry for the first lane of four lane rural roads. To begin with, we investigated the driving speed of the car, which is not been influenced by a preceding car to analyze the influence of the geometrical structure by using Nc-97. Secondly, we statistically analyzed the driving features of the solid geometry after comparing the 6 sections, that is, measuring the driving speed feature at 12 points and combining the influence of the vertical geometry and plane geometry to the driving speed of the plane curve which was researched before. Finally, we estimated the value of cant which considers the driving speed not by using it which has applied uniformly without considering it properly, though there were some differences between a designed speed and driving speed through the result of the basic statistical analysis but by introducing the new safety rate rule, a notion of ${\alpha}$. As a result of the research, we could see the driving features of the car and suggest the safety rate which considers these. For considering the maximum cant, if we apply the safety rate, the result of this experiment, which considers 3-D solid geometry, there'll be the improvement of the driver's safety for designing roads. In addition, after collecting and analyzing the data for the road sections which have various geometrical structures by expanding this experiment it is considered that there should be developed the models which considers 3-D solid geometry.