• Title/Summary/Keyword: Road image recognition

Search Result 133, Processing Time 0.025 seconds

Lane Positioning in Highways Based on Road-sign Tracking by Kalman Filter (칼만필터 기반의 도로표지판 추적을 이용한 차량의 횡방향 위치인식)

  • Lee, Jaehong;Kim, Hakil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.50-59
    • /
    • 2014
  • This paper proposes a method of localization of vehicle especially the horizontal position for the purpose of recognizing the driving lane. Through tracking road signs, the relative position between the vehicle and the sign is calculated and the absolute position is obtained using the known information from the regulation for installation. The proposed method uses Kalman filter for road sign tracking and analyzes the motion using the pinhole camera model. In order to classify the road sign, ORB(Oriented fast and Rotated BRIEF) features from the input image and DB are matched. From the absolute position of the vehicle, the driving lane is recognized. The Experiments are performed on videos from the highway driving and the results shows that the proposed method is able to compensate the common GPS localization errors.

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Kim, S.H.;Lee, D.H.;Lee, M.H.;Be, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2843-2845
    • /
    • 2000
  • A lane detection based on a road model or feature all need correct acquirement of information on the lane in a image, It is inefficient to implement a lane detection algorithm through the full range of a image when being applied to a real road in real time because of the calculating time. This paper defines two searching range of detecting lane in a road, First is searching mode that is searching the lane without any prior information of a road, Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It is allow to extract accurately and efficiently the edge candidates points of a lane as not conducting an unnecessary searching. By means of removing the perspective effect of the edge candidate points which are acquired by using the inverse perspective transformation, we transform the edge candidate information in the Image Coordinate System(ICS) into the plane-view image in the World Coordinate System(WCS). We define linear approximation filter and remove the fault edge candidate points by using it This paper aims to approximate more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.

  • PDF

An Vision System for Traffic sign Recognition (교통표지판 인식을 위한 비젼시스템)

  • Kim, Tae-Woo;Kang, Yong-Seok;Cha, Sam;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.45-50
    • /
    • 2009
  • This paper presents an active vision system for on-line traffic sign recognition. The system is composed of two cameras, one is equipped with a wide-angle lens and the other with a telephoto lends, and a PC with an image processing board. The system first detects candidates for traffic signs in the wide-angle image using color, intensity, and shape information. For each candidate, the telephoto-camera is directed to its predicted position to capture the candidate in a large size in the image. The recognition algorithm is designed by intensively using built in functions of an off-the-shelf image processing board to realize both easy implementation and fast recognition. The results of on-road experiments show the feasibility of the system.

  • PDF

Adaptive Counting Line Detection for Traffic Analysis in CCTV Videos (CCTV영상 내 교통량 분석을 위한 적응적 계수선 검출 방법)

  • Jung, Hyeonseok;Lim, Seokjae;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • Recently, with the rapid development of image recognition technology, the demand for object analysis in road CCTV videos is increasing. In this paper, we propose a method that can adaptively find the counting line for traffic analysis in road CCTV videos. First, vehicles on the road are detected, and the corresponding positions of the detected vehicles are modeled as the two-dimensional pointwise Gaussian map. The paths of vehicles are estimated by accumulating pointwise Gaussian maps on successive video frames. Then, we apply clustering and linear regression to the accumulated Gaussian map to find the principal direction of the road, which is highly relevant to the counting line. Experimental results show that the proposed method for detecting the counting line is effective in various situations.

Illumination-Robust Load Lane Color Recognition based on S-color Space (조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법)

  • Baek, Seung-Hae;Jin, Yan;Lee, Geun-Mo;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.434-442
    • /
    • 2018
  • In this paper, we propose a road lane color recognition method from the image obtained from a driving vehicle. In autonomous vehicle techniques, lane information becomes more important as the level of autonomous driving such as lane departure warning and dynamic lane keeping assistance is increased. In particular the lane color recognition, especially the white and the yellow lanes, is necessary technique because it is directly related to traffic accidents. In this paper, color information of lane and road area is mapped to a 2-dimensional S-color space based on lane detection. And the center of the feature distribution is obtained by using an improved mean-shift algorithm in the S-color space. The lane color is determined by using the distance between the center coordinates of the color features of the left and right lanes and the road area. In various illumination conditions, about 97% color recognition rate is achieved.

A Study on Vehicle Number Recognition Technology in the Side Using Slope Correction Algorithm (기울기 보정 알고리즘을 이용한 측면에서의 차량 번호 인식 기술 연구)

  • Lee, Jaebeom;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.465-468
    • /
    • 2022
  • The incidence of traffic accidents is increasing every year, and Korea is among the top OECD countries. In order to improve this, various road traffic laws are being implemented, and various traffic control methods using equipment such as unmanned speed cameras and traffic control cameras are being applied. However, as drivers avoid crackdowns by detecting the location of traffic control cameras in advance through navigation, a mobile crackdown system that can be cracked down is needed, and research is needed to increase the recognition rate of vehicle license plates on the side of the road for accurate crackdown. This paper proposes a method to improve the vehicle number recognition rate on the road side by applying a gradient correction algorithm using image processing. In addition, custom data learning was conducted using a CNN-based YOLO algorithm to improve character recognition accuracy. It is expected that the algorithm can be used for mobile traffic control cameras without restrictions on the installation location.

  • PDF

Development of an abnormal road object recognition model based on deep learning (딥러닝 기반 불량노면 객체 인식 모델 개발)

  • Choi, Mi-Hyeong;Woo, Je-Seung;Hong, Sun-Gi;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.149-155
    • /
    • 2021
  • In this study, we intend to develop a defective road surface object recognition model that automatically detects road surface defects that restrict the movement of the transportation handicapped using electric mobile devices with deep learning. For this purpose, road surface information was collected from the pedestrian and running routes where the electric mobility aid device is expected to move in five areas within the city of Busan. For data, images were collected by dividing the road surface and surroundings into objects constituting the surroundings. A series of recognition items such as the detection of breakage levels of sidewalk blocks were defined by classifying according to the degree of impeding the movement of the transportation handicapped in traffic from the collected data. A road surface object recognition deep learning model was implemented. In the final stage of the study, the performance verification process of a deep learning model that automatically detects defective road surface objects through model learning and validation after processing, refining, and annotation of image data separated and collected in units of objects through actual driving. proceeded.

Automatic Extraction of Route Information from Road Sign Imagery

  • Youn, Junhee;Chong, Kyusoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.595-603
    • /
    • 2015
  • With the advances of the big-data process technology, acquiring the real-time information from the massive image data taken by a mobile device inside a vehicle will be possible in the near future. Among the information that can be found around the vehicle, the route information is needed for safe driving. In this study, the automatic extraction of route information from the road sign imagery was dealt with. The scope of the route information in this study included the route number, route type, and their relationship with the driving direction. For the recognition of the route number, the modified Tesseract OCR (Optical Character Recognition) engine was used after extracting the rectangular-road-sign area with the Freeman chain code tracing algorithm. The route types (expressway, highway, rural highway, and municipal road) are recognized using the proposed algorithms, which are acquired from colour space analysis. Those road signs provide information about the route number as well as the roads that may be encountered along the way. In this study, such information was called “OTW (on the way)” or “TTW (to the way)” which between the two should be indicated is determined using direction information. Finally, the route number is matched with the direction information. Experiments are carried out with the road sign imagery taken inside a car. As a result, route numbers, route number type, OTW or TTW are successfully recognized, however some errors occurred in the process of matching TTW number with the direction.

Recognition of a Close Leading Vehicle Using the Contour of the Vehicles Wheels (차량 뒷바퀴 윤곽선을 이용한 근거리 전방차량인식)

  • Park, Kwang-Hyun;Han, Min-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.238-245
    • /
    • 2001
  • This paper describes a method for detecting a close leading vehicle using the contour of the vehi-cles rear wheels. The contour of a leading vehicles rear wheels in 속 front road image from a B/W CCD camera mounted on the central front bumper of the vehicle, has vertical components and can be discerned clearly in contrast to the road surface. After extracting positive edges and negative edges using the Sobel op-erator in the raw image, every point that can be recognized as a feature of the contour of the leading vehicle wheel is determined. This process can detect the presence of a close leading vehicle, and it is also possible to calculate the distance to the leading vehicle and the lateral deviation angle. This method might be useful for developing and LSA (Low Speed Automation) system that can relieve drivers stress in the stop-and-go traffic conditions encoun-tered on urban roads.

  • PDF

A Vehicle Tracking Algorithm Focused on the Initialization of Vehicle Detection-and Distance Estimation (초기 차량 검출 및 거리 추정을 중심으로 한 차량 추적 알고리즘)

  • 이철헌;설성욱;김효성;남기곤;주재흠
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1496-1504
    • /
    • 2004
  • In this paper, we propose an algorithm for initializing a target vehicle detection, tracking the vehicle and estimating the distance from it on the stereo images acquired from a forward-looking stereo camera mounted on a road driving vehicle. The process of vehicle detection extracts road region using lane recognition and searches vehicle feature from road region. The distance of tracking vehicle is estimated by TSS correlogram matching from stereo Images. Through the simulation, this paper shows that the proposed method segments, matches and tracks vehicles robustly from image sequences obtained by moving stereo camera.