• Title/Summary/Keyword: Road environmental data

Search Result 557, Processing Time 0.028 seconds

Road Alignment Design Using GIS

  • Kang, In-Joon;Lee, Jun-Seok;Kim, Tae-Hun;Park, Hyun
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • In this study, several basic data for road design and GIS data were used for selecting the optimized road alignment database system. The cut and fill volumes were compared with existing manual road design method through the analysis and data application in this database system. We solved and estimated objective, economic, environmental and technical problems caused in road construction comparing existing manual method with the road alignment which was selected in GIS automatically. Also, we performed three dimensional simulation with the existing road design program and simulation of virtual reality through Virtual GIS. This study showed the method in selecting the optimized road alignment through the analysis and comparison of the selected road alignment. The goal of this study is comparison and analysis of definite cut and fill volume and environmental problem after the road construction through analyzing and comparing the social, economic, technical and environmental aspect in the road alignments with various statistic data.

  • PDF

The Estimating MFFn by SWMM in The Transportation Area (SWMM 모형을 활용한 도로 형태별 초기세척비율 산정)

  • Kwon, Hun-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Shin, Suk-Ho;Lee, Chun-Sik;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.277-287
    • /
    • 2012
  • The MFFn(Mass First Flush) was analyzed for various rainy events(monitoring data from 2008 to 2009) in Transportation area(Highway, National road, Trunk road). Estimated MFFn using SWMM was evaluated by comparison with observed MFFn. MFFn was estimated by varying n-value from 10% to 90% on the rainy events. The n-value increases, MFFn is closed to '1'. As time passed, the rainfall runoff was getting similar to ratio of pollutants accumulation. The result of a measure of the strength of the linear relationship between observed data and expected data under model was good ($R^2$=0.89). Pollutants runoff loads by volume showed Highway 26.6%, National road 44.8%, Trunk road 35.0% at the MFF20(20% by total runoff). A case of MFF30, pollutants runoff loads by volume showed Highway 40.2%, National road 54.3%, Trunk road 46.8%. According to the results, Initial precipitation basis were Highway MFF30, National road MFF20, Trunk road MFF30 when the Non-Point source control facilities set up.

A Model of Environmental Naturalness for Roadscape - Focused on the National Road in Suburb Areas - (도로경관의 자연환경성 모형 -교외지역 국도를 중심으로-)

  • Hong, Yeong Rok;Gwon, Sang Jun;Jo, Tae Dong
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.505-512
    • /
    • 2004
  • This study was attempted to review the information data for minimizing the destruction of environmental naturalness and the visual damage of landscape from road construction by establishing a model of environmental naturalness for national roads in the suburb areas to suggest an answer to a research question, ' hat does decide the environmental naturalness of roadscape?'. We found that 1) The road-side slope showed no statistical significance in the description of environmental naturalness of roadscape, but the fact that the road-side slope from road construction is the destruction of natural topography cannot be overlooked. 2) In terms of the direction of value variations for independent variables, signboard and telegraph post, soundproofing and protection wall, structure, and building acted toward negative (-) direction, while mountains, sky, road trees, fields, and surrounding green including the road-side slope acted toward positive(+) direction. 3) The variable with highest relative contribution to dependent variables among independent variables is building, which has importance as many as 148 times of road-side slope, while the variable road-side slope has the least importance. Building has the importance of 7.22 times, mountains 5.51 times, road trees 2.59 times, surrounding green 2.54 times, structure 2.41 times, signboard and telegraph post 2.37 times, soundproofing and protection wall 2.20 times, and sky 1.32 times of the fields as a standard criterion values 1.

A Study for Examination of Road Noise Prediction Results According to 3-d Noise Prediction Models and Input Parameters (3차원 소음예측모델 및 입력변수 변화에 따른 도로소음 예측결과 검토에 대한 연구)

  • Sun, Hyosung
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.112-118
    • /
    • 2014
  • The application of a 3-d noise prediction model is increasing as a tool for performing actual noise assessment in order to investigate the noise impact of the residential facility around a development region. However, because the appropriate plans of applying a 3-d noise prediction model is insufficient, it is important to secure the reliability of the noise prediction results generated by a 3-d noise prediction model. Therefore, this study is focused on examining a 3-d noise prediction model, and a prediction equation and input data in it. For this, the 3-d noise prediction models such as SoundPLAN, Cadna-A, IMMI is applied in road noise. After the contents of road noise equations, input data of road noise source, and input data of road noise barrier are understood, the road noise prediction results are compared and examined according to the variation of 3-d noise prediction model, road noise equation, and input data of road noise source and road noise barrier.

Road Traffic Noise in Tunnel (터널 내부의 도로교통소음)

  • 여운호;유명진
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.9-13
    • /
    • 1993
  • This paper describes the impact of reflected sound in tunnel. The impact of reflected sound is obtained from making a comparision between measurements of tunnel and bridge. Sound level of tunnel is higher than that of bridge because reflected sound is generated in tunnel. Road traffic noise cannot be freely propagated because there are many buildings in urban. Therefore, a tunnel effect is generated in urban road. The impact of reflected sound is generated not only in tunnel, but also in urban road. This study provides the basic data for tunneling work and noise control strategy in urban road.

  • PDF

Estimation of Road Sections Vulnerable to Black Ice Using Road Surface Temperatures Obtained by a Mobile Road Weather Observation Vehicle (도로기상차량으로 관측한 노면온도자료를 이용한 도로살얼음 취약 구간 산정)

  • Park, Moon-Soo;Kang, Minsoo;Kim, Sang-Heon;Jung, Hyun-Chae;Jang, Seong-Been;You, Dong-Gill;Ryu, Seong-Hyen
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.525-537
    • /
    • 2021
  • Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.

Propagation Characteristics and Effects of Road Traffic Noise (도로교통소음의 전파특성 및 영향)

  • Park, Joon-Cheol;Kim, Yoon-Shin;Kang, Dae-Joon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.311-315
    • /
    • 2008
  • This study was performed to investigate propagation characteristics and effects of road traffic noise generated from vehicles. Noise levels of expressway and general road were measured at four points in a straight line based on distance from the road, and analyzed. The average noise level of expressway was 78.9 dBA at 5 m, 76.4 dBA at 10 m, 72.0 dBA at 20 m, 69.0 dBA at 30 m. That of general road was lower about $3.1{\sim}3.5\;dBA$ than that of expressway. There was no significant difference in distance attenuation between expressway noise and general road noise. The farer the distance from source is, the more the attenuation is. The influence range of noise is assessed by noise environmental standards or road noise limits. Noise levels of the time zone were measured at a boundary line of apartment to grasp noise variation by time. The time zone of lowest noises was $3{\sim}4$ a.m. and that of highest noise was $8{\sim}10$ a.m. Data recorded on tapes were analyzed to understand the characteristics of frequency because these characteristics are important factors to plan the noise reduction measures, namely path measures.

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

Estimation of the Effect of Clean Road System on the $PM_{10}$ Concentration at a Heavy Traffic Roadside - A Case study for Daegu City - (클린로드 시스템 가동이 도로변 $PM_{10}$ 농도에 미치는 영향 분석- 대구지역의 사례연구 -)

  • Jo, Byung-Yoon;Baek, Sung-Ok
    • Particle and aerosol research
    • /
    • v.8 no.3
    • /
    • pp.111-120
    • /
    • 2012
  • In Daegu, a road cleaning system was constructed in the central part of the city and has been operated from April, 2011. We evaluated the effect of the system on the concentration of $PM_{10}$ at a roadside monitoring site. The ambient $PM_{10}$ concentration data were logged every 1 min for a period of 20 weeks from May to October, 2011, by means of light scattering method, and then every 5 min data were used in the statistical analysis. The measured data were verified by comparing them with beta-ray data obtained at the same site. Correlation coefficient between the two groups was highly significant (r=0.79), though the absolute levels of light scattering data appeared to be approximately 2.8 times higher than the beta-ray data. Diurnal, daily, weekly, and monthly variations of $PM_{10}$ data did not show any evidence of decreasing effect owing to the clean road system. A comparison of roadside $PM_{10}$ data with non-roadside data also revealed very similar pattern, implying the variation of the $PM_{10}$ concentrations is mainly affected by the traffic conditions near the monitoring site. However, if the operating conditions of the clean road system can be improved, i.e. increasing the frequency and duration of water cleaning, the road cleaning effect may improve the air quality indirectly by means of removing the resuspended particles from the road.

Excess Noise Map for Environmental Standard and Assessment of Noise with Using GIS Data (GIS 자료를 이용한 초과소음지도 작성과 소음 평가)

  • Ko, Joon-Hee;Lee, Byung-Chan;Lim, Jae-Serk;Park, Su-Jin;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1075-1082
    • /
    • 2009
  • Using GIS data of C-si as basic data when making noise map of road traffic, we estimated exactly the noise excess areas and consequently suggested the population and the area exposed to road traffic noise accurately. We made 3D noise map to assess regional distribution of noise quantitatively. The noise map consists of noise prediction model based on data base such as traffic volume and speed changes for estimating quantitatively the noise and 3D urban space model which includes locations of noise sources, 3D buildings, topography and roads. We made noise standard map according to land use conditions and compared this map to road traffic noise map, and consequently made excess noise map. Using excess noise map, we assessed areas which exceed environmental noise level standards and noise guidelines quantitatively and effectively through GIS spatial analysis, and consequently more accurate noise exposed area and noise exposed population could be estimated. To show buildings' outer walls noise exposure, we analyzed 3D urban noise distributions using 3D-analysis of GIS.